
KIMAs: A Configurable Knowledge Integrated Multi-Agent System

Zitao Li∗, Fei Wei∗, Yuexiang Xie∗, Dawei Gao, Weirui Kuang, Zhijian Ma, Bingchen Qian,
Yaliang Li, Bolin Ding

Alibaba Group

Abstract

Knowledge-intensive conversations supported by large language models (LLMs) have become one of the
most popular and helpful applications that can assist people in different aspects. Many current knowledge-
intensive applications are centered on retrieval-augmented generation (RAG) techniques. While many
open-source RAG frameworks facilitate the development of RAG-based applications, they often fall short
in handling practical scenarios complicated by heterogeneous data in topics and formats, conversational
context management, and the requirement of low-latency response times. This technical report presents a
configurable knowledge integrated multi-agent system, KIMAs, to address these challenges. KIMAs features
a flexible and configurable system for integrating diverse knowledge sources with 1) context management
and query rewrite mechanisms to improve retrieval accuracy and multi-turn conversational coherency, 2)
efficient knowledge routing and retrieval, 3) simple but effective filter and reference generation mechanisms,
and 4) optimized parallelizable multi-agent pipeline execution. Our work provides a scalable framework for
advancing the deployment of LLMs in real-world settings. To show how KIMAs can help developers build
knowledge-intensive applications with different scales and emphases, we demonstrate how we configure
the system to three applications already running in practice with reliable performance.1

1 Introduction
Large language models (LLMs) have had a profound impact on various aspects of people’s lives, particularly
as the foundational technology behind conversational applications such as chatbots. These models have
become indispensable as virtual assistants, offering powerful capabilities for various tasks, including addressing
common-sense queries, generating summaries for academic papers [16], and solving programming challenges and
tasks [11]. Despite their impressive functionality, LLMs are of some limitations. Issues such as hallucinations
and the inability to provide the most up-to-date information or private knowledge hinder their reliability in
directly serving for knowledge-intensive applications. These shortcomings can be mitigated by integrating
LLMs with external information in the input context [20, 28]. One notable approach is retrieval-augmented
generation (RAG) techniques [1, 10], which enhances LLMs by equipping them with retrieval capabilities,
allows LLMs to address questions that exceed the scope of their pre-trained internal knowledge. RAG has
proven highly effective in improving performance on question-answering (QA) tasks emphasizing faithfulness
to truths, showcasing its potential to bridge the gap between static pre-trained knowledge and dynamic,
context-specific information.

While many real-world applications have adopted RAG techniques [13, 22], open-source frameworks have
also emerged to facilitate the adaptation of RAG to a wide range of tasks [14, 18] for the public to hold RAG
application services themselves with local data. While these open-source RAG frameworks provide convenient
starting points for building RAG-based applications, there remain significant opportunities for improvement,
especially in more practical and complicated scenarios, e.g., efficient multi-source knowledge retrieval, which
provides primary motivations for this paper.
Challenge 1. While developing a basic chatbot using LLM APIs is relatively straightforward, the complexity
increases significantly when the conversation requires intensive external knowledge. A user’s question may

∗Co-first authors.
1The source code is under review and will be available soon.

1

ar
X

iv
:2

50
2.

09
59

6v
1

 [
cs

.A
I]

 1
3

Fe
b

20
25

contain only partial information, while the rest is in the conversation history, such as containing pronouns
referring to an object in the previous question. Using such a question with unclear pronouns as a query to
retrieve knowledge will significantly limit knowledge retrieval accuracy, and answering such unclear questions
may increase the risk of hallucination. Another common case is that when the application is built in a specific
knowledge context (e.g., QA based on a GitHub repository), the user may tend to omit some meaningful
keywords in their questions, without which the LLMs may misuse its internal knowledge to generate improper
answers. Therefore, such applications require mechanisms to clarify and detail the user questions into queries
that contain sufficient information for retrieval knowledge and final answer generation.
Challenge 2. Unlike commercial products [13, 22], building a complete powerful data collection and
preprocessing pipeline may be too heavy for tasks relying on private knowledge. Therefore, a lightweight
and configurable retrieval mechanism may be a more desirable solution for developers to utilize their local
knowledge from different sources with heterogeneous topics and formats. Besides, when it comes to running
time, accurately answering questions with multi-source knowledge also relies on correctly using a subset of
knowledge. However, there is no existing solution for automatically and efficiently handling the knowledge
selection while providing flexibility for taking human intervention.
Challenge 3. Moreover, as a QA application, the final answer generation is arguably the most critical step.
Retrieved content from multiple knowledge sources may easily consume LLM’s effective context window. To
maximize the answer performance, correctly identifying the useful retrieved content and organizing them for
question answering are the keys. But it may be hard to tell how one retrieved knowledge piece from a source
is more helpful than the other. Moreover, for the user experience, providing references is believed to be an
effective operation to increase the trust level of the generated answer. However, it is unclear how to achieve it
efficiently with minimum costs.
Challenge 4. Finally, in addition to correctly answering questions, users may expect the system’s response
time (i.e., latency) to be as short as possible. Considering the system’s needs for necessary query processing,
handling multi-source knowledge retrieval, and answer generation, optimization of execution efficiency requires
careful design.

In this paper, we present the design and implementation of an open-source solution, KIMAs, based on
AgentScope [5] framework. The solution is developed with the following key properties to address the
challenges:

1. Context management and query rewrite mechanisms to enhance retrieval accuracy and conversation
coherency. KIMAs provides a built-in conversation context query enrichment mechanism that can fill the
semantic gaps in the user’s current question based on a long conversation history. A set of configurable
knowledge context query rewrite mechanisms is provided for the developers to further adjust the query
to fully unleash the power of the retrieval mechanisms and match the most desirable knowledge.

2. Efficient routing and retrieval with heterogeneous knowledge sources. KIMAs supports various knowledge
sources with different data topics. KIMAs is also equipped with an efficient routing mechanism that can
ensure when a query comes, only the most appropriate knowledge sources will be used to minimize
the overall cost while ensuring the answer quality. The routing mechanism is also configurable in the
sense that developers can provide extra manually written mix-in or scale the score to bias the selection
according to their preference and actual use cases.

3. Simple yet effective answer and reference generation. We provide a filtering mechanism that is compatible
with content from different knowledge sources so that the LLMs can effectively use their window size to
generate the final answer. Recognizing that providing citations and references is critical for ensuring
trust and transparency in knowledge-intensive applications, KIMAs also implements a straightforward
yet reliable strategy for generating citations without requiring model training or introducing additional
latency for the central answer generation.

4. Configurable and low-latency multi-agent pipeline. KIMAs employs a multi-agent pipeline architecture.
While the pipeline is configurable with three different types of agents, we provide an optimized
configuration with parallelization to maximize efficiency and resource utilization.

In summary, this paper introduces KIMAs, an open-source framework designed to address the challenges of
integrating RAG techniques into real-world applications. By enabling versatile query enhancement mechanisms

2

with conversation and knowledge context, handling heterogeneous knowledge sources, and ensuring reliable
citation generation, KIMAs seeks to improve the utility and trustworthiness of RAG-based systems. Through
the practical use cases of KIMAs, we demonstrate its robustness and adaptability to building effective QA
chatbots and other RAG-driven applications, advancing the state of the art in this rapidly evolving domain.

2 Preliminary

2.1 LLM-based Multi-Agent System
Agent. In this paper, “agent”, abbreviated from “LLM-based agent”, is usually characterized as a paradigm
of LLM-centric applications that employ LLM to mimic human brain [31]. With the reasoning capability
of LLMs [17, 19, 29, 35], an agent can decompose a complex task into subtasks that can be solved more
reliably; meanwhile, LLM can make decisions so that an agent can dynamically decide when and how to use
tools (i.e., APIs of different external functionalities, such as query portal of current weather of a city) given a
task [21, 24, 36]; finally, with a memory for maintaining context and related knowledge [8, 26], agents can
generate appropriate answers in long conversations or utilize external knowledge. In this paper, we relax the
definition of an agent so that it may contain only a subset of these three elements.
Multi-agent and pipeline. At the current stage, an agent’s performance is not satisfying given complicated
tasks. For example, end-to-end code generation [9] or have a large number of tools for selection. Multi-agent
systems represent an emerging paradigm, where multiple agents, each specialized in some specific tasks,
collaborate to solve complex tasks. Some of the multi-agent frameworks are conversational [15, 33], where
multiple agents collaborate and communicate with each other by generating messages in natural language
generated by LLM. Some other multi-agent frameworks [9] emphasize the diverse capabilities of LLMs to
break down tasks into modular components, allowing individual agents to specialize in specific roles such as
information retrieval, reasoning, or decision-making. By communicating and exchanging intermediate outputs,
agents collectively achieve goals that exceed the capabilities of a single LLM operating in isolation. There
are also many multi-agent systems that are designed for specific tasks, including medical [27], coding [34],
and evaluation [2]. Although the above work may have implementation differences, the main idea is still to
decompose complex tasks into simple subtasks and let each agent work as an information processing node in
a pipeline.

2.2 Knowledge-intensive QA
RAG is one of the most popular techniques coupled with LLMs, designed to address knowledge-intensive tasks,
particularly those requiring high-confidence answers or involving private knowledge unavailable during the
model’s training phase. In the early stages, when language models lacked strong in-context learning capabilities,
RAG techniques primarily relied on training or fine-tuning models to integrate retrieved knowledge [1, 10].
However, with the rapid advancement of language models and their demonstrated ability to perform in-context
learning, a more efficient and cost-effective approach has emerged. This strategy involves appending retrieved
text chunks as additional prompts to the LLM input, avoiding the need for task-specific fine-tuning [23]. In
parallel, significant research has been dedicated to improving retrieval mechanisms to ensure higher-quality
inputs, such as dense retrieval methods that enhance the relevance of retrieved text [12]. These developments
highlight the ongoing evolution of RAG techniques and their critical role in extending the capabilities of
LLMs for real-world applications.

3 Knowledge-oriented QA System Designs in KIMAs

KIMAs focuses on the scenario where application users expect to obtain accurate answers based on knowledge
from multiple homogeneous or heterogeneous sources. We use the following hypothetical use case to
demonstrate the challenges of building knowledge-oriented QA applications in practice. The real use cases
are presented in the following Section 4.
Hypothetical use case. If a developer of a GitHub repository wants to build an LLM-based QA plugin based
on his repository, he may need to consider the following potential questions:

3

1. Technical questions that LLMs can answer if enough locally available knowledge is provided, such as
the code snippet, API documents or tutorials available in this GitHub repository;

2. Questions related to this GitHub but requiring knowledge beyond the locally-host one, such as whether
there are any existing applications built based on this GitHub repository but implemented by a third
party, whether there is any third-party solution for some issuing when using this repository, or whether
is any third-party comments about this repository.

Inspired by this hypothetical use case, we identify the following problems in building a knowledge-intensive
QA system for practical use cases. Our system design focuses mainly on solving these problems.
(1) Technical questions may not always be formulated clearly. There exists a gap between many
research-oriented Retrieval-Augmented Generation (RAG) benchmarks and practical scenarios. When
application users encounter technical issues, they often struggle to articulate their questions accurately,
particularly in terms of using the correct terminology, for example, the meaning of an input parameter of a
function in the context of the specific GitHub repository in the hypothetical use case above. Application
users may require additional "warm-up" conversations to clarify and refine their inquiries in these cases. The
missed information is expected to be filled in by understanding the conversation and knowledge contexts for
better retrieval and QA performance.
(2) Different questions may prefer different knowledge sources. Consider the first type of question
in the hypothetical use case above. A pipeline built with processed GitHub repository data stored in a local
vector database can be an economical and flexible solution that can solve most of the questions. For the
second type of question, collecting information through some online search APIs can provide LLMs with more
comprehensive information to generate reliable and up-to-date answers. In addition, different knowledge
sources may also require different query preprocessing techniques and information post-processing operations.
For example, when using online search engines, it may be more important to propose a set of correct keywords
based on the complete sentences in natural language, but complete but more organized sentences may be
preferred when using embedding similarity-based search in vector databases.
(3) Irrelevant information need to be filtered and adopted information need to be cited explicitly.
The retrieval mechanism cannot always guarantee that all the retrieved content is helpful for answering the
question. The useless information need to be filtered out before being fed into the LLMs as the LLMs have
limited effective context windows to process information. On the other hand, existing LLMs can still generate
hallucinated messages or cannot generate perfect answers for some complicated questions in conversations
(e.g., code generation with very specific requirements). As many commercial closed-source solutions (e.g.,
Perplexity[22]), providing information sources (e.g., links to GitHub files or websites) has been proven as a
common way to accommodate such limitations, as the application users can further refer to those provided
links for verification or proceeding their difficult task with ground-truth knowledge support.
(4) Application users desire similar response latency as simple RAG solutions. Another critical
metric that influences user experience is response latency. Application users generally expect LLM applications
to deliver responses with consistent speed, regardless of the complexity of the backend information processing.
However, a significant portion of RAG application developers use only the available LLM APIs and cannot
control how model inference optimization works. This expectation introduces a significant challenge in
scenarios where multi-stage information processing is required. Despite the inherent complexity of such
systems, maintaining efficiency remains a crucial metric that must be considered.

3.1 Modules and System Structure Overview
Agentive Modularization. In our design, three modules serve as cores in KIMAs: conversation context
management, information retrieval, and final answer generation. As in Figure 1, we design a specialized agent
class for each module: context manager, retrieval agent, and summarizer.

• Context manager : In everyday communication, conversations often rely heavily on contextual information.
The same is true in knowledge-intensive conversational QA tasks. In general, the context manager is
designed to enrich the query by extracting missing information from the conversation context, ensuring
its completeness. For instance, when KIMAs is used to provide QA services for the AgentScope [5]
GitHub repository, a user might query whether there is any multi-agent games application in the

4

Figure 1: KIMAs system with agentive modularization and configurable pipeline.

repository. An initial response can be “Yes. For example, there is a simulation for the game Werewolf
that...” After that, the user may ask a follow-up question, “Where can I find the code for it?” In this
case, the context manager must rely on context to determine that “it” refers to the Werewolf game in
the AgentScope repository and enrich the user question for the following operations.

• Retrieval agents: Each retrieval agent has its own information source(s) (e.g., similarity search with a
local vector database or used by an online search engine). One of the primary tasks of these agents
is to further revise the query based on the agent’s specific knowledge context and retrieve relative
information. For example, when the retrieval agent has access to an online search engine, it rewrites the
query into a set of keywords to align the search mechanism. In contrast, when a retrieval agent relies
primarily on a vector database with dense and sparse retrieval, a sentence enriched with conversation
context and task background can improve the matching process during retrieval.

• Summarizer : The summarizer is designed to finalize the answer to a query by integrating information
from the context manager and retrieval agents. The goal of the summarizer is to generate content that
is both faithful to the information provided by the retrieval agents (i.e., faithful) and appropriate within
the context of the conversation (i.e., helpful).

Configurable end-to-end pipeline. While three types of built-in agents are provided and their system
prompt can be adjusted according to the application, there is still large room for configuration for different
kinds of knowledge-intensive QA applications. The following points are exposed for configuration by developers.

• Whether to enable context manager. While the context manager can enrich the user query and provide
necessary context information for the final answer generation, analyzing and processing the context will
take extra time for LLM. In some cases, where extremely low latency is required, the context manager
can be disabled to further reduce latency. Instead, one can directly provide the entire conversation
history for the summary and ask it to generate the final answer directly. Of course, if the context
manager is disabled, the quality of the final answer may be hard to control if the conversation is
complicated or the LLM is weaker.

• Which knowledge context query rewrite strategies are applied. As discussed above, query rewrite can
be a critical point for a knowledge-intensive application, helping to retrieve more accurate content
from knowledge sources. KIMAs provides interfaces in the configuration with multiple build-in rewrite
strategies (and rewrite prompts of some strategies) for the developers. More details will be discussed in
Section 3.2.

• Which knowledge sources are used. We provide built-in vector database and online search engine APIs
as the two built-in knowledge sources for the application. For locally hosted knowledge, KIMAs inherits
LlamaIndex [18] functions and is integrated into our system so that developers can switch different
functions by just changing their knowledge configuration files. Details are discussed in Section 3.3.

5

(a) Conversation context rewrite mechanisms (b) Knowledge context query rewrite mechanisms

Figure 2: Query rewrite mechanisms in KIMAs.

• Whether routing is required (with human intervention). We also prove some flexibility for the routing
mechanism. Besides the built-in mechanism routing, we allow developers to cast their human preferences
for the routing by providing additional manually written mix-in text or scaling the importance of some
weights. More details are deferred to Section 3.3.

With these key agents and configurable pipeline design working together, it becomes KIMAs.

3.2 Context-based Query Enhancing
Knowledge-intensive QA applications usually have two kinds of “contexts” as essential factors to answer a
question: the context of conversation and the context of knowledge sources. Correspondingly, two types of
agents in our design can rewrite the user query to enrich its semantic meaning with different information
sources: context manager and retrieval agent. In general, the context manager, designed to help the retrieval
agent and summarize digesting conversation in advance, ensures that the query contains necessary information
from the conversation context; on the other hand, a retrieval agent is supposed to rewrite the query better
to fit the retrieval mechanism in its knowledge source context. While the rewrite mechanisms of context
manager are fixed, the ones for retrieval agents are designed to be more flexible. The following are details
about context-based query enhancement.

Context manager: conversation-contextual query rewrite for retrieval agents. As discussed in
Section 3.1, understanding the user’s real intention behind a query heavily depends on the context of the
conversation. Without some keywords in the conversation context, knowledge retrieval can be pointless.
Thus, the goal of the query rewrite mechanism at this stage is to enrich the query with precise conversation
context information. 1) The first point to consider is that some key information is lost in the query but can
be obtained from the conversation history (e.g., the example mentioned in Section 3.1). The context manager
checks whether the query itself is ambiguous, including containing pronouns referring to terms appearing
in the previous conversation. 2) The second consideration is that some users may rephrase their previous
questions when they find that the answer provided by KIMAs is not satisfactory. Therefore, the context
manager also needs to revise the query with reflection. 3) Besides, this step is expected not to consume too
much time as one of the intermediate steps in the pipeline. Therefore, these two goals are integrated into
the LLM prompt together with the conversation history and the LLM is expected to properly rewrite the
question with necessary details filled and emphasized. Considering the time constraint, we also recommend
using a lightweight LLM to handle this task.

Context manager: conversation-contextual query rewrite for summarizer. The final step in
generating the answer is another step that is heavily based on the context information. In this step, the
quality of the generated answer depends directly on the degree to which the LLM understands the relevant
context. Our observations indicate that while many LLMs perform well for requests with simple requirements,

6

but they may struggle to handle more complex requests involving multiple sub-tasks (e.g., understanding
the conversation and answering the current question with given context in one generation). Besides, when
the context is long (for example, a long answer is provided to the previous query), including the entire
conversation history in the final step can unnecessarily consume the LLM’s effective context length, reducing
efficiency and potentially affecting output quality. Nevertheless, the final answer generation requires more
detailed information to generate the final answer, which may not always aligned with the rewrite goal for
retrieval agents. To address these challenges, a second function of the context manager is to perform a
detailed and reliable analysis of the conversation context, and only the digested conversation context will be
passed to the summarizer for final answer generation. This ensures that only the most relevant information is
retained, improving the overall quality and efficiency of the final response generation.

More precisely, we prompt the context manager to generate answers with two fields: analysis and
indices_of_related_messages. Generating analysis for the relation between the history and the current
query can be considered with a similar effect to the Chain of Thoughts [30], which enables LLMs to generate
answers more rationally. After the analysis, LLMs should have higher confidence about which previous
historical conversation piece is indeed related to the current one. To provide more precise information for
summarization, we also prompt the LLM to generate indices_of_related_messages, with which we can
directly extract the related messages by the indices.

Retrieval agent: knowledge-contextual query rewrite. In KIMAs, different retrieval agents have
different knowledge sources with potentially heterogeneous data types. In order to maximize the accuracy of
information retrieval, different query rewrite prompts or even query rewrite algorithms can be employed at
the agent level.

The built-in rewriting strategies are listed as follows and illustrated in Figure 2b.

• Prompt rewrite (PR): Rewrite the query following the instructions of the prompt. This mechanism
allows developers to customize the prompt to LLM inject necessary information to the query, typically
prior knowledge or understanding of the knowledge.

• Retrieval rewrite (RR): Rewrite the query with some knowledge content retrieved with the original
query. An intuition of this method is that LLMs can help revise more accurate queries when providing
some knowledge context.

• Keyword rewrite (KR): Extract only keywords from the original query for search engines. When using
online search engine APIs, keywords are usually the best way to perform a search, as the redundant
information in the original query may diverge the search to unrelated content.

• HyDE rewrite [6] (HR): Generate a paragraph with LLM’s internal knowledge to answer the query,
then take the paragraph as the new query. It is shown that in some cases, the embeddings of the LLM
generated response without the interference of external knowledge can be more similar than the one of
the raw query to the desired embeddings of the desired knowledge, so that it can improve the retrieval
performance.

• Translation rewrite (TR): Rewrite the query in the same language as the one specified in the
configuration of the knowledge source. For the cases where the language in the knowledge source is
different from the one of the query, it is believed that maybe mapping it first to the targeted language
can provide a more accurate retrieval result.

All the above rewrite strategies are available and only require changing configuration files. However,
developers can provide their own rewrite strategies and easily integrate them into their applications.

3.3 Efficient Multi-source Information Retrieval
3.3.1 Knowledge retrieval mechanisms

The retrieval agents play key roles in KIMAs because they have access to knowledge sources. Their responsibility
is to retrieve and provide relative knowledge to user queries. The following built-in support for the different
knowledge sources can be easily assigned to retrieval agents via configuration.

7

• Local knowledge stored in vector databases (VDB). Using local vector databases is the most popular and
efficient method to construct local knowledge bases, especially after LLMs demonstrate their in-context
learning capability. The embeddings of the knowledge in VDB only need to be computed once and used
to construct the indexing. At inference time, it only requires the embedding model to encode a query
into a vector for a similarity match. The storage of local knowledge and retrieval from local VDB has a
few advantages. The first advantage is that it can utilize local knowledge, which is available locally,
with little data privacy or data sovereignty concerns. A second advantage is that VDBs usually support
a mixture of dense (embedding similarity) and sparse (BM25) retrieval, which can provide superior
performance when semantic similarity is the only metric for retrieval. A third advantage is that even if
the embedding relies on API, generating embedding for a query is usually much more affordable (even
if it can be done locally) than calling the API of search engines. In KIMAs, users can choose to use
LlamaIndex [18] built-in in-memory VDB or Elasticsearch [4].

• Online search engines. There are many advantages of using online search engines as an information
source. One is that it can guarantee the information is up-to-date. A second advantage is that the search
engine algorithms rank the returned results, which consider many different factors (e.g., timeliness,
popularity and authority with Internet-scale information). Therefore, even if it is more expensive than
the local VDB method, online search engines are still one of the popular knowledge sources in many
applications. The built-in support in KIMAs for search engine is built on Bing search [25], but developers
can easily switch to Google search and others.

• Domain specific HTTP API. Some websites provide in-site search APIs, which can return some domain-
specific knowledge presented on the website but are not open to web crawlers. To leverage such APIs,
we provide some flexible request-response parsing functions that facilitate the calling step and response
parsing steps.

Discussion: raw text information or LLM digested information? Determining whether the retrieval
agent should process the retrieved information before feeding it into the summarizer is tricky. The answer
should be given case by case, depending on many different factors. For example: 1) Can the LLM used by
the summarizer support processing long context information and still provide reasonably good reasoning
capability? 2) Do we expect that the final answer of KIMAs can be generated efficiently (e.g., seeing the first
token within ten seconds)? If the answers to both questions are “yes”, then letting the retrieval agents return
the raw text and letting the summarizer process the raw information directly may be more appropriate because
it can avoid additional latency because of LLM processing. Besides, such a more straightforward approach
can reduce the chance of introducing LLM hallucinations. However, suppose only context-length-limited
LLMs are available, or the available LLMs cannot provide acceptable performance in long-context reasoning;
it may be a better solution to let each retrieval agent process the raw retrieved information, extract the key
information first, and only pass the valuable information to the final answer generation step.

3.3.2 Embedding clustering routing

We expect each retrieval agent to take charge of one or a few knowledge sources. The key guidance is that
one can group similar knowledge sources to the same retrieval agent so that the knowledge context query
rewrite can benefit the retrieval of all similar knowledge sources. On the other hand, knowledge sources with
very different topics or contents are supposed to be assigned to different retrieval agents.

However, a challenge is correctly selecting the best-fit retrieval agent(s) with the most relevant knowledge
source. Most existing multi-agent routing mechanisms rely on 1) manually created descriptions for the
(functionalities of) agents and 2) using LLMs as decision-makers to decide which agents should be activated
to provide knowledge. However, such a combination is not suitable for routing between knowledge retrieval
agents. As a knowledge source may contain a large volume of knowledge, it can easily exceed the context
length of any LLMs; nevertheless, it is challenging for human beings to summarize all the knowledge from a
source comprehensively. Meanwhile, using LLMs to select the knowledge source may not be a good idea in
practice because 1) its output can be non-negligible randomness, which can make it hard to ensure consistency;
2) LLMs inference can be slow and restricted by the context length (i.e., not suitable for high-efficiency
applications or context with long conversation).

8

Figure 3: A simple visualization of the routing mechanism. Because the query embedding is closer to centroids
in Agent A’s knowledge domain, Agent A is roused to conduct knowledge retrieval.

Backbone routing mechanism. We adopt an algorithm similar to [32]. Figure 3 gives a simple visualization
of the core idea. The key idea is to utilize the embeddings of the knowledge in each agent. In addition to
being used in retrieval, the embeddings of the knowledge (e.g., text chunks) are also perfect representations
of that knowledge. Therefore, the embeddings of chunks of knowledge are first clustered in each agent, and
the centroids of the cluster are considered to be synopses of the knowledge. When routing, an embedding of
the query needs to be used for similarity search with the centroids of all retrieval agents. Only the agents
with top-K similar centroids to the query embedding are activated for exact knowledge retrieval.

Manual mix-in. Different from [32], we also need to consider retrieval agents using online search APIs as
the knowledge source, which has limited or even no local knowledge to guide the selection of knowledge. In
addition, the method of in [32] is completely data-driven. While complete data-driven is a desired feature, it
also means difficult to impose human preferences when it comes to real practice.

To resolve such inconveniences, we allow developers to either 1) provide the initial description or 2)
provide a set of typical knowledge chunks (e.g., QA pairs or chunks of plain text) as mix-in to enrich the
routing. Such manual descriptions are also encoded into embeddings. When routing, the similarity considered
becomes a weighted average of the similarity score of the local knowledge pieces to the query and one of
the manual mix-ins to the query. When developers have higher confidence in their manual description and
want it to dominate the process of the selection, a higher weight can be assigned to the similarity score of
the manual description; if the developer wants to save effort and have plenty of coherent knowledge in each
agent’s knowledge base, a higher weight can be assigned to the similarity score of the local knowledge pieces.
If the knowledge source is not local, the manual description can serve as the only centroid of the knowledge.

Score scaling. In practice, the similarity scores when comparing the same query with different types of
documents can vary in various ranges. For example, when matching a natural language query with Python
code knowledge, it usually has lower scores than matching with natural language documents, even if the key
relative information related to the query is indeed in the Python code. To handle such cases, we employ
a simple but effective strategy that allows users to scale some similarity score related to specific types of
knowledge, either up or down.

3.4 Summarization
Reranking for filtering. A common strategy to avoid the false-negative cases (i.e., high-relevance
knowledge is not retrieved) is to retrieve slightly overwhelming information that is larger than the context
length of the LLMs. In KIMAs, since multiple retrieval agents can provide different knowledge sources,
the summarizer can receive overwhelming information that cannot fit into the effective context window of
LLMs. However, although embedding similarity matching mechanisms can efficiently retrieve a lot of relevant
information, they are not metrics to rank or filter information due to the following important issues. 1) Some

9

retrieval agents may even never compute the similarity score, such as those using the online search engine as
the knowledge source. 2) High similarity scores can contain false positive signals as they are computed in
compressed vector space. 3) The similarity scores from different resources may not be comparable because
the retrieval agents may rewrite the query for some purpose, so the similarity scores used in retrieval are
actually based on different queries. 4) The nature of knowledge can affect the outcome, such as the data
format, chunk size, etc.

Reciprocal rank fusion (RRF) [3] can be a model-free statistic that may help in reranking and filtering.
However, it is unlikely to have duplicated knowledge pieces retrieved from different knowledge sources.
Therefore, RRF may not be that useful for reranking in multi-source knowledge retrieval. Instead, we use the
reranking model to sort the raw retrieved fragments. Although a reranking model can introduce additional
computation cost, it is a more reliable and general method for our tasks.

Citation generation. Citations and references can provide additional confidence for the generated content
as users can verify the answer by looking at the references provided. However, generating citations is a
challenging task for LLMs [7]. In KIMAs, our goal is to generate citations efficiently without training a specific
model or introducing a significant regression in latency or reasoning performance for the final answer.

We tested several approaches. Our initial is one-step, with which the LLMs are prompted to finish the
following tasks in a single answer: 1) analyze which chunks can help answer the query question; 2) generate
the answer to the query question; 3) select the indices of the related chunks. Then, the final answer is to
assemble the generated answer and extract the reference with the indices. However, such an approach has
several limitations. First, the LLM must have strong reasoning and context-processing ability. Second, the
LLM must generate structure output (e.g. in JSON format) from which different information can be extracted,
which means that it is impossible to use the stream mode of the LLMs to provide a low-latency experience
for users and introduce additional task failure risk as LLMs cannot always correctly format its output. Third,
as the retrieved knowledge is usually in chunks, they can be from different or the same information source
(e.g., the same paper). Therefore, it requires additional effort to handle or distinguish duplications.

Solution: A look-back approach. To bypass the above problems, we design a look-back strategy for citation
generation. The entire generation utilizes the stream mode provided by many LLM APIs or local inference
frameworks and consists of two stages. The first stage is to prompt the LLM to generate an answer to
the query question based on the retrieved knowledge. The answer is presented directly to the users. The
second stage is to provide the generated answer together with the retrieved knowledge to the LLM and let
it output the reference of the knowledge used to generate answers. Such a strategy is robust with weaker
requirements on the reasoning capability of LLMs. Besides, as the content is generated in stream mode,
the user’s experience can be significantly improved as the first token they observed at the same time it is
generated, and only a small pause will be observed after the answer is generated and waiting for the citation
generation.

3.5 Optimizing Pipeline for Efficient Execution
Many LLM-based applications seek low response latency, which poses a challenge for multi-stage applications
like KIMAs. More specifically, since multiple sub-tasks exist, LLM will inevitably be used to generate multiple
times and introduce some intermediate result waiting time. Therefore, efficiently arranging the execution
requires parallelizing as much LLM usage as possible. In order to optimize efficiency, the execution of KIMAs
can be executed in parallel with requests for asynchronous model APIs as follows.

• Parallelization 1: Query ingest. At this stage, two functions are executed in parallel. One is
the context manager conversation context query rewrite for retrieval agents, which fills in missing key
information for the current query question based on the whole conversation history so that the following
retrieval stage can use more accurate information. The other is query routing, deciding which retrieval
agents are the correct ones to execute.

• Parallelization 2: Knowledge retrieval and context analysis. At this stage, each retrieval
agent obtains the query enriched with the necessary context information of the conversation. At
this stage, each agent can rewrite a knowledge-context query to match the knowledge context and
retrieve knowledge. Meanwhile, the context manager analyzes the context of the previous conversation

10

Use case With context
manager

Routing /
Preference
adjust

Offline knowledge
source(s)

Online knowledge
source(s)

AgentScope
QA

Yes ON / No AgentScope tutorial,
code, examples, API
docs and FQA set

-

ModelScope
QA

Yes ON / Yes ModelScope tutorials,
and 5 GitHub repos

ModelScope offical arti-
cle, models, datasets,

Olympic Bot No OFF/- - Olympic events

Table 1: Use Case Configurations

and generates distilled information to ensure the final answer fits the conversation. All of the above
agent operations are performed in parallel. At the end of this stage, the retrieval information and the
conversation context analysis results are shared with the summarizer for the final response generation.

4 Use Cases
Sytem implementation. KIMAs is implemented based on a multi-agent framework, AgentScope [5]. At the
agent level, the agents inherits from the built-in agents in AgentScope but with extra features specialized
for KIMAs, such as the methods supporting the efficient routing mechanism and some external knowledge
management and retrieval functions. At the pipeline level, the agents receive input and pass process
information via AgentScope’s message objects; some of the parallel execution stages in the pipeline are
tailored specifically in KIMAs for easy management and code management.

In the following, we demonstrate how we configure KIMAs to build different QA applications for three
different tasks.

4.1 Small scale application: AgentScope QA
As a proof-of-concept example, we first present an example with offline knowledge sources with different data
formats and topics as a starting point to demonstrate how KIMAs works.

Figure 4: Use case in Q&A
group of AgentScope

Goals. In this use case, we adapt KIMAs to help answer questions about
AgentScope’s GitHub repository. The expectation for this application is to
serve as a chatbot in a Q&A group for developers building their multi-agent
application with AgentScope framework, providing an accurate response in time
to the raised questions. It is observed that the most common questions fall in
the following categories:

• Preliminary project questions. As the Q&A group is open for everyone,
some potential users of AgentScope are also presented in the group. Their
questions are usually about the feature of AgentScope, its advantages
compared with other similar open-source frameworks, and the feasibility
of using AgentScope for their task. Once some of them decide to initiate
their project with AgentScope, they may be looking for whether there are
already demonstration examples for tasks similar to theirs provided in the
GitHub repository for reference.

• Coding or debugging related questions. Another majority of questions in the
Q&A group appear to be developers using AgentScope but encounter issues
in their development process. For example, they may seek clarifications
of two different agent classes or help to solve the execution errors in their
AgentScope-based applications.

11

Application Configuration. To satisfy the above goals and provide reliable
answers to the questions in Q&A group, we configure our KIMAs in terms of knowledge and execution as the
following.

• Knowledge sources configuration. The knowledge bases equipped to the agents in this use case span the
content related to the core functions of library: the tutorial (Markdown files), code (mainly Python
code), API documents (processed into text files). The examples in the AgentScope library, which
serve as good demonstration examples for beginners, are also included as knowledge of how to use
the AgentScope framework with code and description in Markdown format. Besides, some of the
frequently asked questions beyond the scope of the repository (e.g., comparison with other frameworks)
are gathered manually, and are summarized and filled with appropriate answers to form a FQA set as
an additional knowledge source to the repository. All of this knowledge is processed (i.e., chunking and
generating embeddings) and stored in a vector database for query by a knowledge configuration file.
Each type of knowledge is assigned to a retrieval agent.

With the routing mechanism, the preliminary project questions are usually answered with the knowledge
shared by the agents charging tutorial, examples, and FQA set, while answering the coding or debugging
questions will depend on information from tutorial, code, and examples.

• Pipeline. This application is configured with all three types of agents activated: context manager,
retrieval agent, and summarizer. The context manager is used to help understand the real intention
of the user in a conversation context. The retrieval agents are configured with the Prompt rewrite
module with prompts design for each agent according to their equipped knowledge.

Figure 4 is a screenshot of a real QA with KIMAs AgentScope QA application in the DingTalk Q&A group.

4.2 Larger scale: ModelScope QA
Goal. While serving as a Q&A chatbot similar to the AgentScope use case, the spectrum of questions to
be handled is significantly larger than the ones in Agentscope. Modelscope community is a platform of
open-sourced machine learning models, datasets, training/finetuning libraries and applications built with
LLMs and other models. It is expected a chatbot to provide an accurate initial answers potentially based on
all these kinds of the knowledges from different sources.
Application Configuration. To helpfully serve the users in the community, we highlight the specialties in
configure as the following.

• Knowledge sources configuration. The knowledge sources used in these applications can be categorized
into two types, online and offline.

The online knowledge sources include model and dataset information, official articles about the latest
open-source community technical progress. These knowledge sources are achieved by Bing search API
with different constraints, i.e., restricted to domain of available models/datasets/articles on the website.
It is configured to use a commercial search engine instead of in-site search because the results of Bing
can also be used to provide related knowledge that ranked by more sophisticated mechanisms beyond
text similarity, such as recommending the most popular Text-to-Image models.

The offline knowledge sources include the tutorial documents and eight different GitHub repositories
affiliated with ModelScope. The tutorial covers knowledge about how to use models, datasets and
computation resources available on modelscope.cn, and the repositories contain code files and repository-
level instructions. Compared with the online knowledge sources, these knowledge sources can be hosted
and retrieved locally because the retrieval standard is more

• Pipeline configuration. Generally speaking, the pipeline configuration is similar to the AgentScope use
case, involving all three kinds of agents. But key difference is in the routine mechanism configuration.
We provide some manual description mix-in for the routing mechanism to bias some selections manually.
For example, both the tutorial and model knowledge source contains the information of some models
(or models with similar names); however, the information from model knowledge source is more up-
to-date than the one from the tutorial. Therefore, we add some manual mix-in to bias the "model

12

modelscope.cn

(a) Online sources usage (b) Offline sources usage (c) Mixture usage

Figure 5: Three demonstration QA pairs using different knowledge resources in Modelscope QA.

recommendation" type question to use model knowledge source rather than tutorial. Because some
knowledge sources are considered more reliable and official (i.e., official articles and tutorial), we set a
scaling factor greater than 1 to make the information pieces from those sources have a higher chance of
being selected.

Figure 5 shows three QA pairs from the ModelScope QA using different knowledge sources.

4.3 Turbo Scale: Olympic Bot on Weibo
Goal. During the Paris 2024 Olympic Games, KIMAs serves as the core of the back-end algorithm to generate
auto-comments for the posts related to the Olympics2. The posts and comments of this Weibo bot are
supposed to focus only on Olympic Games, including the news and historic Olympic events. However, there
are many other bots performing on Weibo, but there is a restriction that no more than two bots can reply to
the same Weibo post. Therefore, there is a race condition and the response generation efficiency becomes
a key point in this scenario. To encounter such challenge, our configuration of KIMAs needs to make the
following changes.
Application Configuration. In order to fulfill the requirements, KIMAs is configured as the following.

• Knowledge sources configuration. We configure a retrieval agent to use the specialized search API for
Olympic related events. The APIs perform searches similar to public search engines using keywords to
match related information.

• Pipeline configuration. To extremely reduce response latency, the pipeline configuration becomes simple.
The context manager is deactivated, and the only retrieval agent will perform a keyword query rewrite
only. The full conversation history and the retrieved knowledge will be directly fed to the summarizer
to generate the final answer.

With such knowledge and pipeline configuration, the end-to-end latency is reduced to less than 10 seconds
per post or comment, while the responses are still very informative and popular.

5 Conclusion
In this technical report, we introduce KIMAs, our configurable knowledge-integrated multi-agent system for
developers to build their knowledge-intensive QA system. We present three use cases built on our system with
different emphases to demonstrate that KIMAs can be configured to various applications. While the current
version of KIMAs focuses on knowledge-intensive QA tasks, future development can expand its capabilities to
address a broader range of challenges, including code generation based on some specific local code base and
interactive recommendation system for e-business.

2https://weibo.com/u/7929611818

13

https://www.modelscope.cn/studios/AI-ModelScope/modelscope_copilot_beta
https://weibo.com/u/7929611818

References
[1] Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Millican,

George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al. Improving
language models by retrieving from trillions of tokens. In International conference on machine learning,
pages 2206–2240. PMLR, 2022.

[2] Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu, Wei Xue, Shanghang Zhang, Jie Fu, and
Zhiyuan Liu. Chateval: Towards better llm-based evaluators through multi-agent debate. arXiv preprint
arXiv:2308.07201, 2023.

[3] Gordon V Cormack, Charles LA Clarke, and Stefan Buettcher. Reciprocal rank fusion outperforms
condorcet and individual rank learning methods. In Proceedings of the 32nd international ACM SIGIR
conference on Research and development in information retrieval, pages 758–759, 2009.

[4] BV Elasticsearch. Elasticsearch. software], version, 6(1), 2018.

[5] Dawei Gao, Zitao Li, Xuchen Pan, Weirui Kuang, Zhijian Ma, Bingchen Qian, Fei Wei, Wenhao Zhang,
Yuexiang Xie, Daoyuan Chen, et al. Agentscope: A flexible yet robust multi-agent platform. arXiv
preprint arXiv:2402.14034, 2024.

[6] Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan. Precise zero-shot dense retrieval without
relevance labels. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1762–1777, 2023.

[7] Tianyu Gao, Howard Yen, Jiatong Yu, and Danqi Chen. Enabling large language models to generate
text with citations. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pages 6465–6488, 2023.

[8] Kostas Hatalis, Despina Christou, Joshua Myers, Steven Jones, Keith Lambert, Adam Amos-Binks,
Zohreh Dannenhauer, and Dustin Dannenhauer. Memory matters: The need to improve long-term
memory in llm-agents. In Proceedings of the AAAI Symposium Series, volume 2, pages 277–280, 2023.

[9] Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao Zhang,
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. Metagpt: Meta programming for a multi-agent
collaborative framework. In The Twelfth International Conference on Learning Representations.

[10] Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative models for open
domain question answering. arXiv preprint arXiv:2007.01282, 2020.

[11] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. Swe-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations.

[12] Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. arXiv preprint
arXiv:2004.04906, 2020.

[13] Kimi.ai. Kimi.ai. https://www.perplexity.ai/, 2023. Accessed: 2025-01-09.

[14] LangChain. Langchain. https://www.langchain.com/, 2023. Accessed: 2025-01-09.

[15] Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel: Commu-
nicative agents for" mind" exploration of large language model society. Advances in Neural Information
Processing Systems, 36:51991–52008, 2023.

[16] Guanyu Lin, Tao Feng, Pengrui Han, Ge Liu, and Jiaxuan You. Arxiv copilot: A self-evolving and
efficient LLM system for personalized academic assistance. In Delia Irazu Hernandez Farias, Tom Hope,
and Manling Li, editors, Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 122–130, Miami, Florida, USA, November 2024. Association
for Computational Linguistics.

14

https://www.perplexity.ai/
https://www.langchain.com/

[17] Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas, and Peter Stone. Llm+ p:
Empowering large language models with optimal planning proficiency. arXiv preprint arXiv:2304.11477,
2023.

[18] LlamaIndex. LlamaIndex: Build ai knowledge assistants over your enterprise data. https://www.
llamaindex.ai/, 2023. Accessed: 2025-01-09.

[19] Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu, and
Jianfeng Gao. Chameleon: Plug-and-play compositional reasoning with large language models. Advances
in Neural Information Processing Systems, 36, 2024.

[20] Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? In Proceedings
of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 11048–11064, 2022.

[21] Aaron Parisi, Yao Zhao, and Noah Fiedel. Talm: Tool augmented language models. arXiv preprint
arXiv:2205.12255, 2022.

[22] Perplexity. Perplexity. https://www.perplexity.ai/, 2023. Accessed: 2025-01-09.

[23] Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, Amnon Shashua, Kevin Leyton-Brown, and
Yoav Shoham. In-context retrieval-augmented language models. Transactions of the Association for
Computational Linguistics, 11:1316–1331, 2023.

[24] Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves
to use tools. Advances in Neural Information Processing Systems, 36:68539–68551, 2023.

[25] Bing Search. Bing search. https://www.bing.com/. Accessed: 2025-01-09.

[26] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing Systems,
36, 2024.

[27] Xiangru Tang, Anni Zou, Zhuosheng Zhang, Ziming Li, Yilun Zhao, Xingyao Zhang, Arman Cohan,
and Mark Gerstein. Medagents: Large language models as collaborators for zero-shot medical reasoning.
arXiv preprint arXiv:2311.10537, 2023.

[28] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models. arXiv
preprint arXiv:2206.07682, 2022.

[29] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in neural
information processing systems, 35:24824–24837, 2022.

[30] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in neural
information processing systems, 35:24824–24837, 2022.

[31] Lilian Weng. LLM powered autonomous agents. https://lilianweng.github.io/posts/
2023-06-23-agent/, 2023. Accessed: 2025-01-09.

[32] Feijie Wu, Zitao Li, Fei Wei, Yaliang Li, Bolin Ding, and Jing Gao. Talk to right specialists: Routing
and planning in multi-agent system for question answering, 2025.

[33] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang,
Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via multi-agent conversation
framework. arXiv preprint arXiv:2308.08155, 2023.

15

https://www.llamaindex.ai/
https://www.llamaindex.ai/
https://www.perplexity.ai/
https://www.bing.com/
https://lilianweng.github.io/posts/2023-06-23-agent/
https://lilianweng.github.io/posts/2023-06-23-agent/

[34] John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan, and
Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering. arXiv preprint
arXiv:2405.15793, 2024.

[35] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in Neural Information
Processing Systems, 36, 2024.

[36] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React:
Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629, 2022.

16

	Introduction
	Preliminary
	LLM-based Multi-Agent System
	Knowledge-intensive QA

	Knowledge-oriented QA System Designs in KIMAs
	Modules and System Structure Overview
	Context-based Query Enhancing
	Efficient Multi-source Information Retrieval
	Knowledge retrieval mechanisms
	Embedding clustering routing

	Summarization
	Optimizing Pipeline for Efficient Execution

	Use Cases
	Small scale application: AgentScope QA
	Larger scale: ModelScope QA
	Turbo Scale: Olympic Bot on Weibo

	Conclusion

