
SSL/TLS Session-Aware User Authentication
Revisited

Rolf Oppliger1, Ralf Hauser2, and David Basin3

1 eSECURITY Technologies Rolf Oppliger
Beethovenstrasse 10, CH-3073 Gümligen, Switzerland

Phone/Fax: +41 (0)79 654 8437
E-mail: rolf.oppliger@esecurity.ch

2 PrivaSphere AG
Fichtenstrasse 61, CH-8032 Zürich, Switzerland

Phone: +41 (0)43 299 5588, Fax: +41 (0)1 382 2133
E-mail: hauser@privasphere.com

3 Department of Computer Science, ETH Zurich
Haldeneggsteig 4, CH-8092 Zürich, Switzerland

Phone: +41 (0)44 632 7245, Fax: +41 (0)44 632 1172
E-Mail: basin@inf.ethz.ch

Abstract. Man-in-the-middle (MITM) attacks pose a serious threat to
SSL/TLS-based e-commerce applications, and there are only a few tech-
nologies available to mitigate the risks. In [OHB05], we introduced the
notion of SSL/TLS session-aware user authentication to protect SSL/TLS-
based e-commerce applications against MITM attacks, and we proposed
an implementation based on impersonal authentication tokens. In this
paper, we present a number of extensions and variations of SSL/TLS
session-aware user authentication. More specifically, we address multi-
institution tokens, possibilities for changing the PIN, and possibilities
for making several popular and widely deployed user authentication sys-
tems be SSL/TLS session-aware. Furthermore, we also investigate the
technical feasibility and the security implications of software-based im-
plementations of SSL/TLS session-aware user authentication.

Keywords. Electronic commerce, security, phishing, pharming, man-in-
the-middle attack, SSL/TLS protocol, SSL/TLS-aware user authentica-
tion

1 Introduction

Man-in-the-middle (MITM) attacks pose a serious threat to SSL/TLS-based e-
commerce applications, such as Internet banking, and there are only a few tech-
nologies that can be used to mitigate the risks. In [OHB05], we introduced the
notion of SSL/TLS session-aware user authentication to protect SSL/TLS-based
e-commerce applications against MITM attacks. The main idea is to make the
user authentication depend not only on the user’s (secret) credentials, such as a



password or personal identification number (PIN), but also on state information
related to the SSL/TLS session in which the credentials are being transferred
to the server. The rationale behind this idea is that the server should have the
possibility to determine whether the SSL/TLS session in which it receives the
credentials is the same as the user employed when he sent out the credentials in
the first place.

– If the two sessions are the same, then there is probably no MITM involved.
– If the two sessions are different, then something abnormal is going on. It

is likely that a MITM is located between the user’s client system and the
server.

Using SSL/TLS session-aware user authentication, the user authenticates
himself by providing a user authentication code (UAC4) that depends on both
the credentials and the SSL/TLS session (in particular, information from the
SSL/TLS session state). A MITM who gets hold of the UAC can no longer
misuse it by simply retransmitting it. The key point is that the UAC is bound to
a particular SSL/TLS session, and if the UAC is submitted on another session,
then the server can easily recognize this fact and drop the session. As such,
SSL/TLS session-aware user authentication provides a lightweight alternative
to the deployment and rollout of a public key infrastructure (PKI) to protect
against MITM attacks.5

There are a number of possibilities to implement SSL/TLS session-aware user
authentication. In [OHB05], we argued (i) that software-based implementations
are inherently vulnerable, (ii) that one should therefore pursue hardware-based
implementations in the first place, and (iii) that a particularly promising possi-
bility is the use of hardware tokens, preferrably in the form of impersonal PKCS
#11-compliant authentication tokens. While we are still in basic agreement with
these points, we are less strict in this paper. In fact, we broaden the scope of our
ideas and also consider possibilities to implement (parts of) SSL/TLS session-
aware user authentication in software, and investigate the security implications
of doing this. Consequently, we make a distinction between hardware-based and
software-based implementations of SSL/TLS session-aware user authentication.

– In the first case, we are talking about hardware tokens (i.e., hard-tokens).
Such a token may be (physically) connected or not.6

– In the second case, we are talking about software tokens (i.e., soft-tokens).

In either case, an authentication token can be personal or impersonal. Fur-
thermore, it can be consistent with a cryptographic token interface standard,
4 In [OHB05], a UAC is referred to as a transaction authorization number (TAN).
5 Note, however, that the deployment and rollout of a PKI typically may have other

objectives, e.g., the ability to provide nonrepudiation services.
6 We say that the token is physically connected, or just connected, if there is a di-

rect communication path in place between the token and the client system. This
includes, for example, galvanic connections, as well as connections based on wireless
technologies, such as Bluetooth or infrared.



such as PKCS #11 [RSA04] or Microsoft’s cryptographic application program-
ming interface (CAPI). We assume that a standard CAPI driver is preinstalled
on newer versions of the Windows operating system, and that this driver can be
used by the Microsoft Internet Explorer to drive the token in some transparent
way (from the user’s viewpoint). On all other platforms, we assume that some
PKCS #11 driver software must be installed to drive the token. This includes,
for example, the case in which a Mozilla browser is employed on a Windows
platform.

For the remainder of this paper, we present a number of extensions and
variations of SSL/TLS session-aware user authentication. To make the paper
self-contained, we summarize the originally proposed token-based approach in
Section 2. We then address multi-institution tokens, possibilities for changing
the PIN, and possibilities for making several popular and widely deployed user
authentication systems be SSL/TLS session-aware in Sections 3 – 5. In Section 6,
we address the question whether (parts of) SSL/TLS session-aware user authen-
tication can be reasonably implemented in software. Finally, we draw conclusions
and provide an outlook in Section 7.

2 Token-Based Approach

The implementation of SSL/TLS session-aware user authentication proposed in
[OHB05] is based on impersonal authentication tokens. Each token holds a pub-
lic key pair,7 of which the private key is used to digitally sign CertificateVerify
messages in the SSL/TLS handshake protocol. Each CertificateVerify message,
in turn, represents a digitally signed hash value of all messages previously ex-
changed during the execution of the SSL/TLS handshake protocol. Part of these
messages is the server’s Certificate message, which comprises the server’s public
key certificate (the server’s public key is included in this certificate). Conse-
quently, the CertificateVerify message is logically bound to the server’s public
key.

The following entities play a role in the originally proposed token-based ap-
proach:

– A user U ;
– An impersonal authentication token T with a small display;
– A client (i.e., browser) C that is used by U to access an SSL/TLS-based

application;
– An SSL/TLS-enabled server S that hosts the application.8

The user U is identified with identifier IDU and holds PINU (a secret PIN
that U shares with S). T is identified by a publicly known serial number SNT .

7 It is possible to have the token only hold the private key.
8 We do not differentiate between S and the application it hosts. Conceptually, one

may think of S as a dedicated server, i.e., a server that exclusively hosts only the
application under consideration.



The serial number may, for example, be imprinted on the back side of the token.
Furthermore, T is equipped with both a public key pair (k, k−1)—of which the
private key k−1 is used to digitally sign the CertificateVerify messages—and a
secret token key KT that is shared with S. The keys k and k−1 are the same
for all tokens (which is why the tokens are impersonal), whereas KT is unique
and specific to T (note, however, that it is not specific to the user). KT can be
generated randomly or pseudo-randomly using a master key MK:

KT = EMK(SNT )

In the first case (where KT is generated randomly), all token keys must be stored
on the server S. In the second case (where KT is derived from SNT ), however,
there is no need to centrally store all token keys on S. Instead, KT can be
generated dynamically from SNT by anybody who holds MK. MK, in turn, is
typically held exclusively by S.

When U wants to access S, he directs C to S. C and S then try to establish
an SSL/TLS session using the SSL/TLS handshake protocol. As part of this
protocol, S authenticates itself using a public key certificate (at this point in
time, we do not assume that the user properly verifies this certificate). S is con-
figured in a way that it always requires client authentication by sending out a
CertificateRequest message to C. When C receives the message, it knows that it
must authenticate itself by returning a Certificate and a properly signed Certifi-
cateVerify message to S. As mentioned above, the CertificateVerify message must
comprise a digitally signed hash value of all previously exchanged messages (the
hash value is further referred to as Hash). The digital signature is generated by
T using its private key k−1. Due to the fact that T is an impersonal token, the
CertificateVerify message neither authenticates the token nor the client. Instead,
the CertificateVerify message only ensures that C uses a token to establish an
SSL/TLS session with S, and that the SSL/TLS session-aware user authentica-
tion mechanism gets access to Hash. Alternatively speaking, the token acts as
a trusted observer.

In addition to providing a properly signed CertificateVerify message to S, the
token T also renders a shortened version of

NT = EKT
(Hash)

on its display (for example, in decimal notation). In this case, E represents
an encryption function that is keyed with KT . Alternatively, NT could also
represent a message authentication code (MAC) computed with a keyed one-
way hash function where KT is the key.9 For example, the HMAC construction
[KBC97] can be used to generate

NT = HMACKT
(Hash).

9 In some circumstances, the use of a MAC is advantageous because keyed one-way
hash functions are generally more efficient than symmetric encryption systems, and
because there are usually no regulations on the use of (keyed) one-way hash functions
(in contrast to the use of encryption systems).



In either case, NT can be shortened to the length of PINU (e.g., 8 decimal
digits) by truncating it. This value must then be combined with PINU to gen-
erate a UAC that is valid for exactly one SSL/TLS session initiated by U . If
f represents a function that combines NT and PINU in some appropriate way,
then the UAC can be expressed as follows:

UAC = f(NT , P INU ) (1)

In general, there are many ways to define an appropriate function f . One
possibility adopted from [MT93] is the digit-wise addition modulo 10. In this
case, the UAC is the digit-wise modulo 10 sum of NT and PINU , which is a
function simple enough for users to compute themselves (e.g., in their heads). If
the token comprises a keypad (to enter PINU ), then the token can also be used
to compute f . In this case, f can be a much more complex function.

After a server-authenticated SSL/TLS session is successfully established be-
tween C and S, S authenticates U by asking him to provide IDU , SNT , and a
valid UAC for the SSL/TLS session in current use.10 On the server side, S can
verify the UAC because it knows f and PINU and because it can reconstruct
NT since it knows Hash and the master key MK that is used to dynamically
generate KT . There is nothing fundamentally different if the server knows a
one-way hash value of PINU (instead of PINU ). This is a well-known security
mechanism to protect the PINs (or passwords, respectively) from malicious sys-
tem administrators or users that have gained access to the file that comprises the
PINs [MT79]. In either case, the server authentication module must be designed
in a way that it can access the SSL/TLS cache to retrieve Hash.

Note that the token-based approach described so far neither requires syn-
chronized clocks nor that nonces are sent back and forth between the entities
involved in the user authentication. Instead, the approach employs a new idea,
namely using nonces derived from the symmetrically encrypted hash values used
by the SSL/TLS protocol.

Also note that it is technically feasible to transfer the UAC as part of the
SSL/TLS CertificateVerify message so that the user authentication can be han-
dled entirely by the token (and hence the user does not have to enter anything
in a Web form). There are at least three possibilities here:

1. T can digitally sign both the Hash value and the UAC.
2. T can digitally sign a keyed hash value (instead of the hash value Hash),

where the UAC represents the key, Hash represents the argument, and the
HMAC construction is used to key the hash function.

10 Note that the user need not enter SNT if this value is included in the public key
certificate for T ’s private key k−1. In this case, the server S can retrieve SNT from
the certificate. Similarly, one could also provide for the user to temporarily register
with a specific token. In this case, S can retrieve IDU from its registration database
and set it as a default value in the user authentication process. Note, however, that
the binding between SNT and IDU is only weak.



3. T can only send the keyed hash value (instead of the digital signature). This
possibility is similar to the second possibility—the only difference is that the
keyed hash value is not digitally signed. Consequently, there is no need to
have a private signing key on the token.

All of these possibilities require changes in the SSL/TLS handshake protocol
and the way the SSL/TLS CertificateVerify message is used in the protocol. This
is disadvantageous. However, a major advantage is that C (i.e., the browser) then
remains unaffected and need not be altered in one way or another. This simplifies
deployment considerably (because the server and the tokens are typically under
the control of the service provider). Furthermore, the property that the client
need not be altered obviously applies to all application protocols that may be
layered on top of SSL/TLS (in addition to HTTP or HTTPS, respectively).

3 Multi-institution Tokens

The notion of a multi-institution token was briefly mentioned in [OHB05]. As
the name suggests, the idea is to allow T to be used by multiple institutions I,
i.e., multiple institutions can use the same token for user authentication. The
rationale behind multi-institution tokens is an economic one: it may be cost
effective to have multiple institutions share a single token.

A simple and straightforward possibility for implementing multi-institution
tokens is to replace the master key MK with a set of institution-specific master
keys MKI , and the token key with a set of institution-specific token keys KIT

(where KIT refers to the secret token key that T shares with I). Similar to
the single-institution case, the token key KIT can be generated dynamically
according to

KIT = EMKI
(SNT ).

Furthermore, this key can be used to generate institution-specific values for

NIT = EKIT
(Hash)

and

UAC = f(NIT , P INIU ).

The personal identification code PINIU is used by user U to authenticate
to institution I, i.e., PINIU is user- and institution-specific. The resulting UAC
can be employed by the user U to authenticate to (the server of) institution I.

There is another possibility to implement multi-institution tokens. This pos-
sibility does not require the token to store KIT for each institution I. Instead,
the token only stores a master key MKT that is shared with an authentication



server (AS). If the token T is used to authenticate user U to institution I, then
T randomly generates a nonce NT and generates the following pair of UACs:

UACI = f ′(NT , P INIU )
UACAS = EMKT

(NT )

The pair of UACs is then submitted to I. I, in turn, forwards UACAS to
AS for decryption, and AS returns back NT to I. It goes without saying that
all communications between I and AS must take place over a secure channel,
e.g., over a SSL/TLS session. Finally, I can use NT to verify PINIU . In this
scheme, the function f ′ must be designed in such a way that it is computationally
infeasible to recover PINIU from UACI and UACAS .

Either possibility to implement multi-institution tokens is useful in practice.
If the set of institutions is more-or-less static, then the first possibility is advan-
tageous since it does not require an authentication server. If, however, the set of
institutions changes often, then the second possibility is more appropriate.

4 Changing the PIN

The security of a token-based implementation of SSL/TLS session-aware user
authentication largely depends on the fact that users never have to enter their
PIN into the client system (e.g., in a Web form). Instead, they either use the PIN
to compute the UAC in their head or they directly enter the PIN in the authen-
tication token in use. If one weakens this constraint, then users are vulnerable
to the “doppelganger window” attack [JM05]. In such an attack, the adversary
pops up a faked window to request user credentials. Since a user is typically
not able to distinguish original and faked windows, it is likely that he enters
his credentials into any window that asks for them. As of this writing, there is
no technology that fully protects against this attack (this includes, for example,
Delayed Password Disclosure (DPD) proposed in [JM05]). This situation is un-
satisfactory and we return to this problem in Section 6 (when we elaborate on
soft-tokens).

The fact that users are preferrably taught to never enter their PIN into a
client system considerably complicates changing the PIN. Normally, one would
implement a Web form in which the user can change his PIN interactively. Since
we disallow Web forms, we must provide other means to allow PIN changes.
In either case, there must be some mechanism in place that allows a user to
signal to the server that he wants to change his PIN and to protect the new PIN
PINnew

U with the old PIN PINold
U .

Let us assume that the user has authenticated himself using an SSL/TLS
session with an UAC, and that he has signaled to the server that he wants to
change his PIN (using, for example, a Web form, or another mechanism for
other application protocols layered on top of SSL/TLS). The server can then
establish an auxiliary SSL/TLS session and send back to the browser a Web



form in which the user is requested to enter a PIN change code (PCC). Again,
the token displays NT for the auxiliary SSL/TLS session, and the user (or token)
can compute a PCC (instead of a UAC) as

PCC = f ′(NT , P INold
U , P INnew

U ).

Here, f ′ represents an arbitrary (but appropriately chosen) function that
allows the server to recover PINnew

U from the PCC. This excludes, for example,
the use of hash functions. In the reference example of [OHB05], f represents the
digit-wise addition modulo 10, and hence f ′ can be defined as

f ′(NT , P INold
U , P INnew

U ) = f(f(NT , P INold
U ), P INnew

U ).

Let, for example, NT = 123, PINold
U = 345, and PINnew

U = 781. In this case,
f(NT , P INold

U ) = 468 and f(f(NT , P INold
U ), P INnew

U ) = 149. Consequently, the
server can retrieve PINnew

U from the PCC 149 submitted by the user. Note that
the PCC can also be tranferred as part of the SSL/TLS CertificateVerify message
as discussed at the end of Section 2 (again, this requires the server to properly
interprete this SSL/TLS protocol message). Also note that the PCC is sent over
an SSL/TLS session. Since the SSL/TLS protocol protects the integrity of all
messages (by sending a MAC at the end of each SSL/TLS record) it is infeasible
for an adversary to modify the PCC, e.g., by flipping bits.

5 Making User Authentication Systems SSL/TLS
Session-aware

There are many user authentication systems that can be employed in an SSL/TLS
setting and almost all of them are susceptible to MITM attacks.11 In the remain-
der of this paper, we elaborate on how to make some popular and widely deployed
user authentication systems be SSL/TLS session-aware in a way that provides
protection against MITM attacks. We distinguish between one-time password
(OTP) and challenge-response systems. In the following section, we then elabo-
rate on the technical feasibility and the security implications of software-based
implementations of SSL/TLS session-aware user authentication.

5.1 OTP Systems

There are basically three classes of OTP systems:

1. Physical lists of OTPs. Examples include scratch lists and access cards,
as well as lists of transaction authentication numbers (TANs) and indexed
TANs (iTANs).

11 A proof-of-concept for indexed TANs (iTANs) was developed by the “Arbeitsgruppe
Identitätsschutz im Internet e.V.” at the University of Bochum in Germany (cf.
https://www.a-i3.org/content/view/411/28/).



2. Software-based OTP systems. Examples include Lamport-style [Lam81] OTP
systems, such as Bellcore’s S/Key [Hal95] and the one-time passwords in
everything (OPIE) system [HM96].

3. Hardware-based OTP systems. Examples include SecurID and SecOVID to-
kens. Note that most hardware-based OTP systems are not connected to
the client systems. This makes the enrollment and deployment of these to-
kens considerably simpler (than the ones that are connected to the client
systems). It also makes them resistant to malware attacks.

In [OHB05], we briefly mentioned how to use impersonal authentication to-
kens to complement hardware-based OTP systems, such as SecurID tokens,
in the sense that the resulting (combined) authentication system is SSL/TLS
session-aware. In short, U employs the OTP as input for f (instead of PINU )
in formula (1). Consequently, the UAC computed is

UAC = f(NT , OTP ).

Everything else (including, for example, the construction of NT ) remains the
same. The disadvantage of this approach is that the user must have two tokens
(i.e., the original OTP token and the impersonal authentication token). This
is likely to be unacceptable in practice and therefore the use of a software-
based OTP system seems to be appropriate. In this case, the OTP system is
implemented in software and is complemented by a hard-token. Again, the use
of soft-tokens is addressed in the following section.

A simple trick is required to make lists of OTPs be SSL/TLS session-aware.
Namely, a compression function compress implemented in the token can be used
to compress Hash in a way that the result, i.e., compress(Hash), may serve as
an index in the list of OTPs. If, for example, compress(Hash) = 37, then the
37th entry in the list represents the OTP that must be used. Due to the fact that
collisions are likely to occur, a collision resolution strategy is needed. Since the
server can keep track of previously used values, we can require that the server
initiates an SSL/TLS session renegotiation, or that the client and the server both
compute an offset value (for the list of OTPs). In the second case, the offset value
must be computed pseudo-randomly from the SSL/TLS session state. In either
case, it is obvious that a list of OTPs should be replaced long before all OTPs
on the list are used (otherwise, collisions become frequent and the performance
decreases considerably).12

Once the appropriate OTP is found (in the list of OTPs), it can be entered
together with PINU in the token. The token, in turn, uses the Hash value and
an appropriately chosen function f ′′ to compute a UAC:

UAC = f ′′(PINU , OTP,Hash) (2)

12 The question when to replace the lists of OTP is an optimization problem. In either
case, a replacement must be requested and initiated by the server.



In this formula, Hash is required to protect against a trivial MITM attack.
If the list of OTPs is relatively short and the MITM needs a specific OTP to
authenticate to the server (on behalf of the user), then the MITM can simply
initiate a series of SSL/TLS session renegotiation or computation of offset values
until the appropriate OTP is found. If Hash is included in the UAC computa-
tion, then it is no longer sufficient for the MITM to have the appropriate OTP.
Furthermore, Hash provides a salt value that makes it computationally more ex-
pensive to precompute tables of valid PINU -OTP pairs for specific UAC values.
This, in turn, makes off-line guessing attacks more difficult to launch.

In either case, the UAC can be entered by the user in a Web form, or it can
be tranferred as part of the SSL/TLS CertificateVerify message as discussed at
the end of Section 2. In the second case, one may also use a nonce N (instead of
Hash) to randomize the UAC.13 For example, N may be added bitwise modulo
2 to the UAC, and N may be encrypted with a public key of the server S (i.e,
kS). Both values—UAC ⊕ N and EkS

(N)—are then transferred as part of the
SSL/TLS CertificateVerify message to S. S, in turn, can use its private key k−1

S

to decrypt N and extract the UAC from UAC ⊕N . Alternatively, one may also
work with 2 nonces. In this case, one of the nonces may be used for mutual
authentication (i.e., to authenticate the server to the client).

5.2 Challenge-Response Systems

Informally speaking, a challenge-response (CR) system is an authentication sys-
tem in which the entity that is authenticated (typically the client) is provided
with a challenge for which it must compute an appropriate response to the entity
that is authenticating (typically the server). In contrast to OTP systems, CR sys-
tems are often implemented in hardware. The corresponding (hardware) tokens
may or may not be connected to the client systems using some cryptographic
token interface standard , such as PKCS #11 or CAPI.

There is a simple and straightforward possibility to make a CR system be
SSL/TLS session-aware: instead of having the server provide a challenge to the
client, the client and the server use NT as a challenge, which is cryptographically
protected using the token key KT as a shared secret. The resulting UAC is the
response that is computed according to formula (1). We distinguish between two
cases depending on whether the token is connected to the client system or not.

1. If the token is connected to the client system, then it is simple and straight-
forward to make the user authentication be SSL/TLS session-aware. In this
case, Hash is sent to the token, and the token can use it to compute NT .
The user must additionally input PINU , so that the token can compute the
UAC according to formula (1).

2. If the token is not connected to the client system, then there is no direct
communications path between the client and the token. This means that

13 In this case, the formula (2) to compute the UAC only takes PINU and the OTP
as arguments. This simplifies things considerably from the user’s point of view.



there must be a possibility to communicate SSL/TLS state information from
the browser to the token. One possibility, which is further addressed in the
following section, is to have the browser display some digits of Hash in
the graphical user interface (GUI) in some authentic way. The user can read
these digits and enter them—together with PINU—in the token. The token,
in turn, can again use formula (1) to compute the UAC.

The major advantage of the first case, where the token is connected, is that
the user interaction is straightforward. Furthermore, one can use NT in its entire
length and thereby provide better protection against PIN guessing attacks. The
major disadvantage is the necessity to install a token driver on the client system
(unless one uses only Windows-based client systems and platforms). The major
advantage of the second case, where tokens are not connected, is that there is no
need for a token interface, and hence, a token driver need not be installed. The
major disadvantage is that the browser must be modified so that its GUI display
some digits of Hash. This point is further addressed in the following section.

In either case, the UAC must be displayed on the token and the user must
enter the UAC in the appropriate Web form. Alternatively, the UAC can also
be tranferred as part of the SSL/TLS CertificateVerify message as discussed at
the end of Section 2.

6 Software-based Implementations

So far, we have assumed that all tokens are hardware-based, meaning that we
only have to deal with hard-tokens. We now weaken this assumption and elab-
orate on the technical feasibility and the security implications of software-based
implementations of SSL/TLS session-aware user authentication.

In a software-based implementation, the hard-token is replaced with a soft-
token, meaning that the token’s functionality is simulated in software, and that
the token’s display is emulated on the display of the client system. The soft-
token may still be compliant to PKCS #11, CAPI, or any other cryptographic
token interface standard. In this case, the basic functionality and interface of the
soft-tokens remain essentially the same (as compared to the hard-tokens). On
the one hand, soft-tokens are flexible and less expensive than hardware-based
solutions. On the other hand, however, soft-tokens have to deal with (at least)
two security problems:

1. Soft-tokens are inherently vulnerable to malware and keylogger attacks. Mal-
ware can do many things, including, for example, reading out cryptographic
keys. Keylogger attacks typically try to retrieve the user credentials when
they are typed in.

2. Soft-tokens are vulnerable to visual spoofing attacks.

Both problems are difficult to solve. Keylogger attacks can be partially solved
by displaying a keyboard on the client’ screen and having the user type in his
credentials using this keyboard. The second problem is particularly tricky. One



has to find means to have the soft-token’s GUI display authentic information.
As of this writing, there are only a few (visual) technologies that can be used
for this purpose (e.g.,[YS02, DT05]).

In one way or another, a software-based implementation of SSL/TLS session-
aware user authentication must have access to some SSL/TLS state information,
in particular the Hash value.

– If the soft-token is consistent with PKCS #11 or CAPI, then it has imme-
diate access to this information (similar to the hard-token). In this case, the
implementation of the soft-token is essentially the same. This includes, for
example, the necessity to install driver software on the client system.

– If, however, the soft-token is not consistent with PKCS #11 or CAPI, then
it has no immediate access to this information. In this case, the situation
is slightly more involved and one must employ other means to access the
Hash value. One possibility is to modify the browser in a way that it is
able to render and display the first digits of the Hash (or compress(Hash),
respectively) value as it appears in the execution of the SSL/TLS handshake
protocol. These digits can, for example, be displayed near the closed pad-
lock icon that marks the SSL/TLS session (typically at the bottom right
of the bowser window). The character set and length of compress(Hash)
may be configurable, and thereby meet the requirements of different user
authentication mechanisms and systems.

In the second case, the users can be equipped with a (typically small) program
that implements a UAC calculator. If, for example, we work with lists of OTPs,
then the user can employ the first digits of Hash as an index in the list of OTPs.
The OTP found in the list must be entered by the user—together with PINU

and Hash—into the UAC calculator, and the UAC calculator must compute
and display the currently valid UAC according to formula (2). This value must
then be entered by the user in a Web form or transferred to the server S as
part of the SSL/TLS CertificateVerify message. In the second case, we have the
possibility to work with nonces encrypted with a server public key instead of
Hash (cf. Section 5.1). The big advantage we see in this case is that there is no
secret key that must be stored on the token.

In either case, the user must have the assurance that the first digits of Hash
displayed by the soft-token are authentic and can somehow be verified. Other-
wise, an attacker can fake the digits and use the UAC to launch a PIN guessing
attack. We already mentioned the fact that this problem is not trivial and that
there are only a few technologies available.

7 Conclusions and Outlook

Man-in-the-middle (MITM) attacks pose a serious threat to SSL/TLS-based
e-commerce applications, such as Internet banking, and there are only a few
technologies that can be used to mitigate the corresponding risks. In [OHB05],



we introduced the notion of SSL/TLS session-aware user authentication to pro-
tect SSL/TLS-based e-commerce applications against MITM attacks, and we
proposed an implementation based on impersonal authentication tokens. In this
paper, we presented a number of extensions and variations of SSL/TLS session-
aware user authentication. More specifically, we proposed multi-institution to-
kens, possibilities for changing the PIN, and possibilities for making several pop-
ular and widely deployed user authentication systems be SSL/TLS session-aware.
In addition, we have also described the technical feasibility and the security im-
plications of software-based implementations. We think that these extensions and
variations are important to implement SSL/TLS session-aware user authentica-
tion in a practical (real-world) setting. This is particularly true for soft-tokens
and hard-tokens that are not physically connected to the client systems. These
tend to be less secure but simpler to deploy than their connected counterparts.

Our next steps will be to prototype the above-mentioned possibilities to make
lists of OTPs (e.g., access cards) and EMV cards that implement Mastercard’s
chip authentication program (CAP) or Visa’s dynamic passcode authentication
be SSL/TLS session-aware. In the first case, we intend to employ soft-tokens,
whereas in the second case, we intend to integrate the functionality into existing
hard-tokens. In either case, we think that both possibilities have a large poten-
tial, mainly because the corresponding authentication systems are (and will be)
widely deployed in practice. In fact, many banks are using lists of OTPs and
consider the replacement of these lists with EMV cards in the future.

References

[DT05] Dhamija, R., and J.D. Tygar, “The Battle Against Phishing: Dynamic Se-
curity Skins,” Proceedings of the 2005 ACM Symposium on Usable Security and
Privacy (SOUPS 2005), ACM Press, July 2005, pp. 77–88.

[Hal95] Haller, N., The S/KEY One-Time Password System, Request for Comments
1760, February 1995.

[HM96] Haller, N., and C. Metz, A One-Time Password System, Request for Com-
ments 1938, May 1996.

[JM05] Jakobsson, M., and S. Myers, “Stealth Attacks and Delayed Password Disclo-
sure,” http://www.informatics.indiana.edu/markus/stealth-attacks.htm.

[KBC97] Krawczyk, H., M. Bellare, and R. Canetti, HMAC: Keyed-Hashing for Mes-
sage Authentication, Request for Comments 2104, February 1997.

[Lam81] Lamport, L., “Password Authentication with Insecure Communication,” Com-
munications of the ACM, Vol. 24, 1981, pp. 770–772.

[MT79] Morris, R., and K. Thompson, “Password security: a case history,” Commu-
nications of the ACM, Vol. 22, Issue 11, November 1979, pp. 594–597.

[MT93] Molva, R., and G. Tsudik, “Authentication Method with Impersonal Token
Cards,” Proceedings of IEEE Symposium on Research in Security and Privacy,
IEEE Press, May 1993.

[OHB05] Oppliger, R., Hauser, R., and D. Basin, “SSL/TLS Session-Aware User
Authentication—Or How to Effectively Thwart the Man-in-the-Middle,” submit-
ted for publication

[RSA04] RSA Laboratories, “PKCS #11 v2.20: Cryptographic Token Interface Stan-
dard,” June 28, 2004.



[YS02] Ye, Z.E., and S. Smith, “Trusted Paths for Browsers,” Proceedings of the
USENIX Security Symposium, 2002, pp. 263–279.


