

Die Internet-Standards der Zukunft

Internet-Expo 2000

7. Februar 2000

Andreas Göldi (Andreas.Goeldi@delta-consulting.com)
Jürg Stuker (Juerg.Stuker@delta-consulting.com)

Frankfurt, Genf, Konstanz, Lausanne, St.Gallen, Zug, Zürich

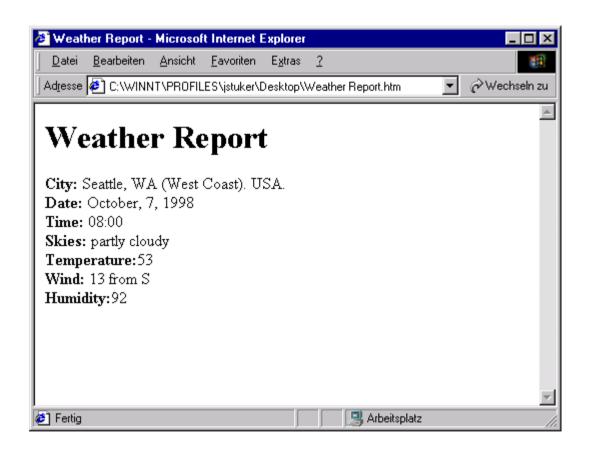
info@namics.com

10 Standards für das Internet der (nahen) Zukunft

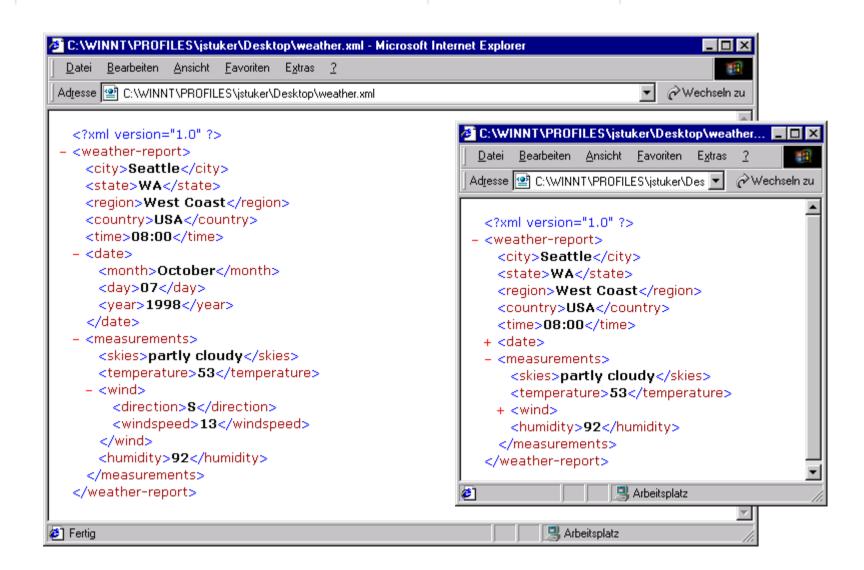
- » 10 Standards aus allen Technologiebereichen
- » ...von der Netzinfrastruktur bis zur clientseitigen Multimedia-Technologie...
- » ...einige schon etablierter, andere erst hoffnungsvolle Kandidaten

XML (eXtensible Markup Language)

XML


- » Methode strukturierte Daten in Text-Datei zu speichern, zu transportieren, zu…
- » Gute lesbar, sprechend, keine vordefinierten Tags
- » Subset von SGML
- » Lizenzfrei, technologieneutral
- » Grundlage für ein Familie von Technologien

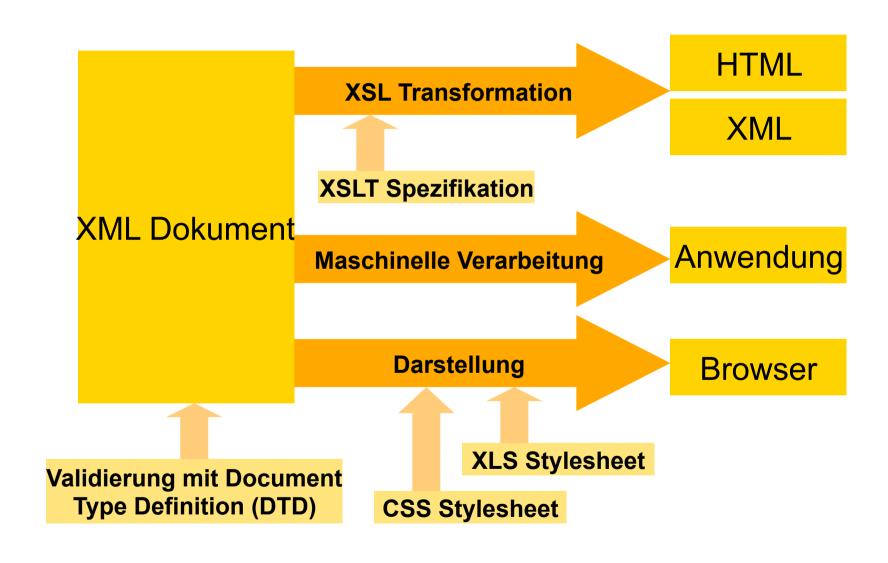
Wettermessung "Seattle" in HTML



Wettermessung "Seattle" in XML

```
<?xml version="1.0"?>
<weather-report>
   <city>Seattle</city>
   <state>WA</state>
   <region>West Coast</region>
   <country>USA</country>
   <time>08:00</time>
   <date>
        <month>October</month>
        <day>7</day>
        <year>1998 </year>
   </date>
   <measurements>
        <skies>partly cloudy</skies>
        <temperature>53</temperature>
        <wind>
                 <direction>S</direction>
                 <windspeed>13</windspeed>
        </wind>
        <humidity>92</humidity>
   </measurements>
</weather-report>
```


Darstellung in IE5 (unformatiert)



Darstellung durch Anwendung

Verarbeitung

Anwendung von XML

- » In XML werden andere Formate beschrieben, z.B.:
 - Channel Definition Format (CDF)
 - Synchronized Multimedia Integration Language (SMIL)
 - Mathematical Markup Language
 - Wireless Markup Language (WML)
- » Datenaustausch, Middleware
- » Data Islands
- » Metadaten

Zusammenfassung

- » Einfach
- » Es wird nie XML Ver. 2 geben
- » Sehr hohe Akzeptanz
- » Inhalt, Darstellung und Verarbeitung getrennt
- » Selbstbeschreibung
- » Schnittstellendefinition wird nicht einfacher

Links

- » www.w3c.org
- » www.oasis-open.org
- » www.xml.com
- » metalab.unc.edu/xml/
- » www.heise.de/ix/raven/Web/xml/

J2EE (Java 2, Enterprise Edition)

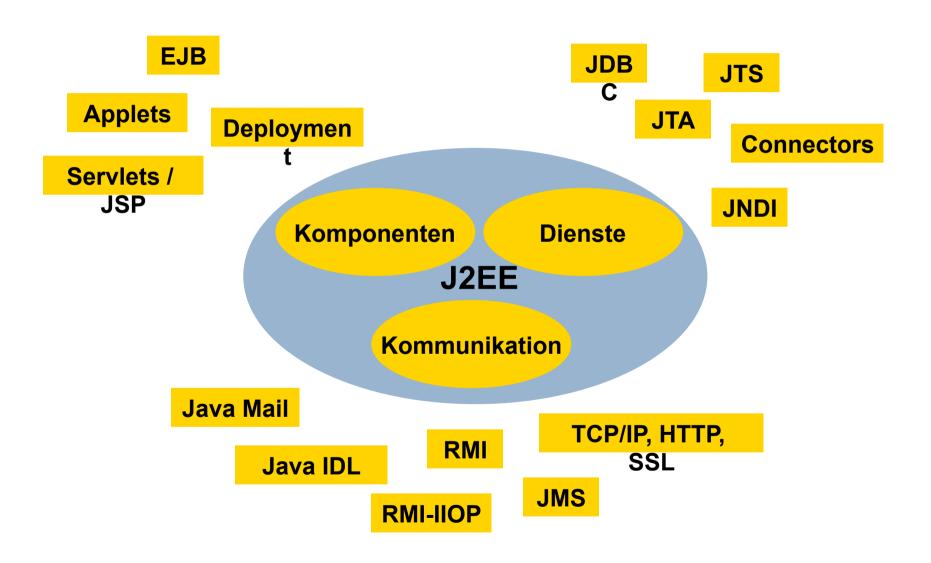
J2EE

» J2EE ist Spezifikation

- Architektur (Application Model)
- APIs und Richtlinien (Platform)
- Testumgebung (Compatibility Test Suite)
- Referenzimplementation

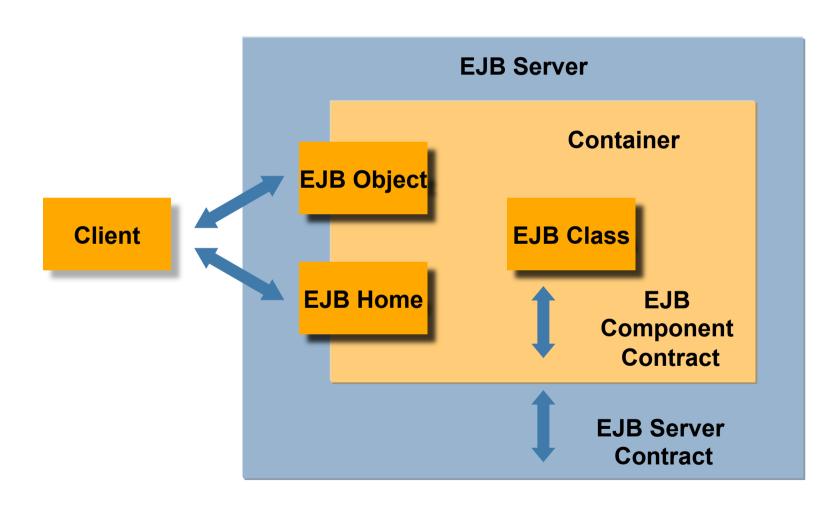
» Fokus

- 3-Tier Architektur, verteilte Anwendungen
- Fokus "Existing Enterprise Application Systems"

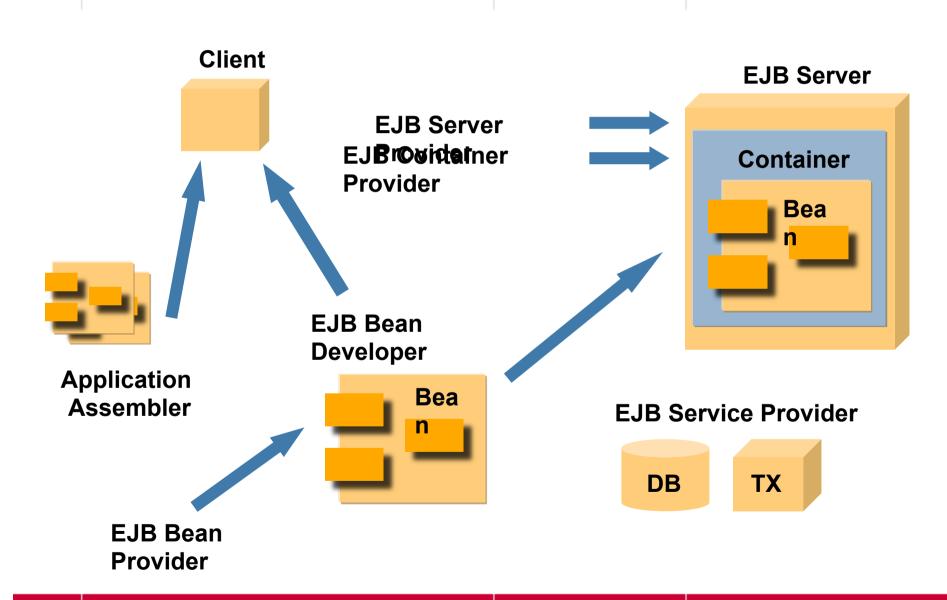

Bedarf

- » Middleware-Techniken sind vorhanden und bekannt
- » Standardfunktionen immer neu erfunden
 - Persistenz
 - Transaktionsmanagement
 - Sicherheit
 - Lastverteilung

J2EE ist...


J2EE Application Model

- » Java als Sprache, JVM
- » Security (Definition bei der Ausbreitung)
- » Komponentenarchitektur und Schnittstellen auf dem "middle tier" und dem "client tier"
- » Schnittstellen zum "EIS-tier"
- » Kommunikation
- » JDBC, JNDI, JMS, JavaMail


EJB-Architektur

EJB-Entwicklung

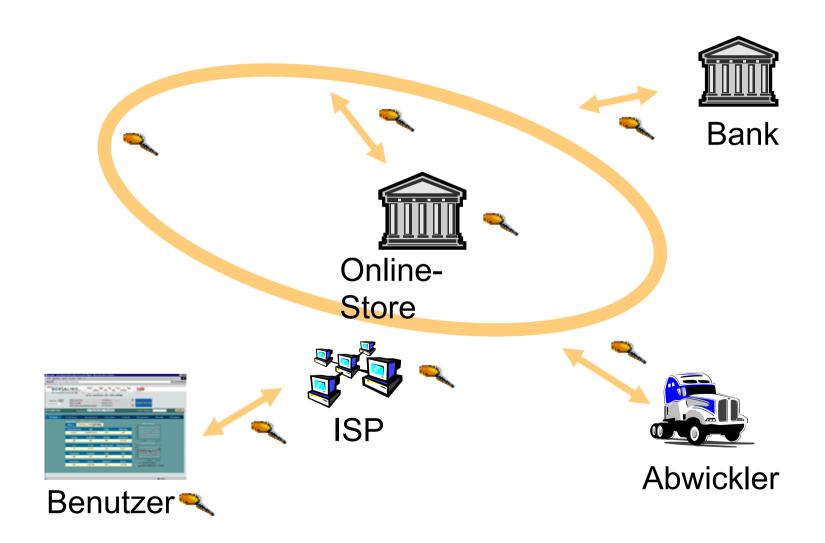
Application Programmers Interfaces (API)

EJB	Modell für Serverkomponenten
JNDI	Java Naming and Directory: DNS, NDS, LDAP,
RMI / IIOP	Java-to-Java und CORBA Kommunikation
JavalDL	Java-to-CORBA inkl. IDL-to-Java Compiler und ORB
Serviets /	Modell für Java in Webbrowser
JMS	Asynchrone Kommunikation. Queueing, Publish/
JTA	Transaktionsmanagement auf Stufe Applikation
JTS	Verteiltes Transaktionsmanagement
JDBC	Datenbankzugriff
JavaMail	E-Mail
JAF	JavaBeans Activation Framework. Datenströme

Zusammenfassung

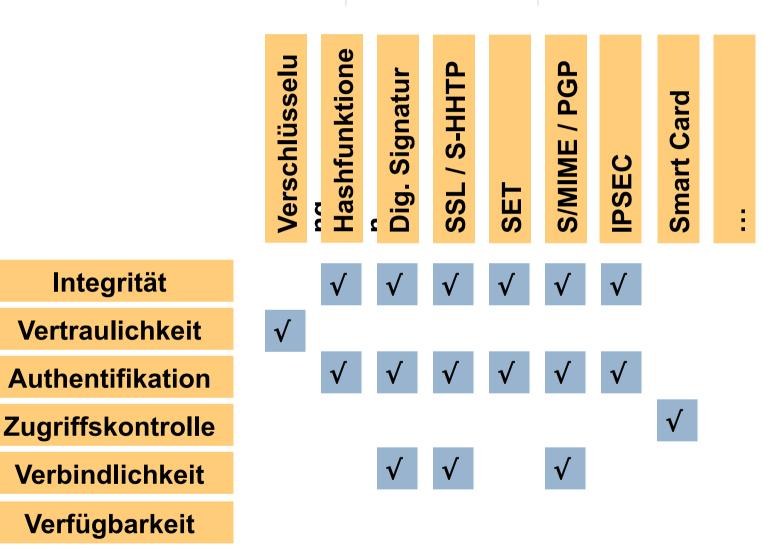
- » Kompatibel mit CORBA
- » Integration von verschiedensten Technologien
- » Setzt auf bestehenden Diensten auf
- » Regelt auch "weiche" Aspekte
- » WORA (write once, run anywhere)

Links


- » www.sente.ch/cetus/software.html
- » java.sun.com/j2ee
- » www.ibm.com/developer/java
- » www.gamelan.com

PKI (Public Key Infrastructure)

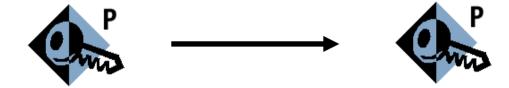
"Business on the Internet"

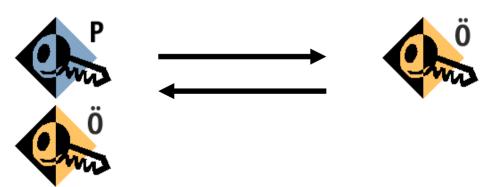

Sicherheitsdienste und -massnahmen

Integrität

Vertraulichkeit

Verfügbarkeit




Verschlüsselung

» Symmetrisch (z.B. DES, IDEA)

Asymmetrisch (z.B. RAS, ElGamal)

Verschlüsselungsverfahren

- » Symmetrische Verschlüsselung
 - Problem der sicheren Schlüsselverteilung
 - Spontane Transaktionen nicht möglich
 - Anzahl Schlüssel: m=n(n-1)/2
- » Asymmetrische Verschlüsselung
 - Schlüsselpaar, ein Schlüssel öffentlich
 - Neue Anwendungen: Digitale Signatur
 - Hauptproblem: Richtige Zuordnung des öffentlichen Schlüssels zu seinem Besitzer

Schlüsselzertifikat nach X.509v3

Versionsnummer

Zertifikatsnummer

ID des verwendeten Signaturalgorithmus

Name der CA nach X.500

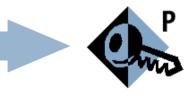
Gültigkeitszeitraum

Name des Besitzers nach X.500

Informationen zum

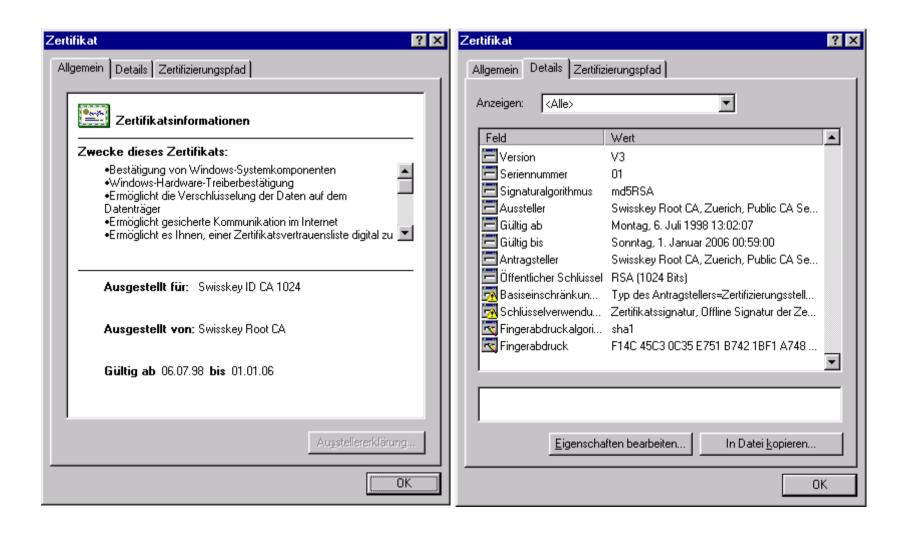
ID des

öffentlichen

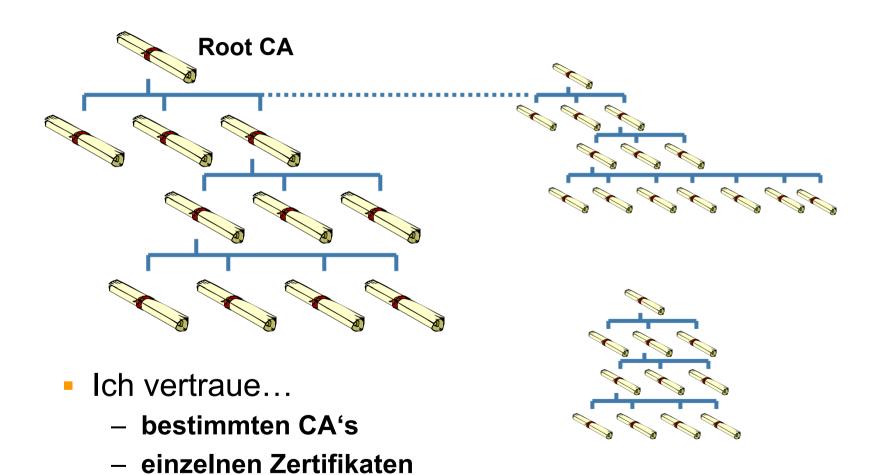

Schlüsseldaten

Besitzers

ID der CA

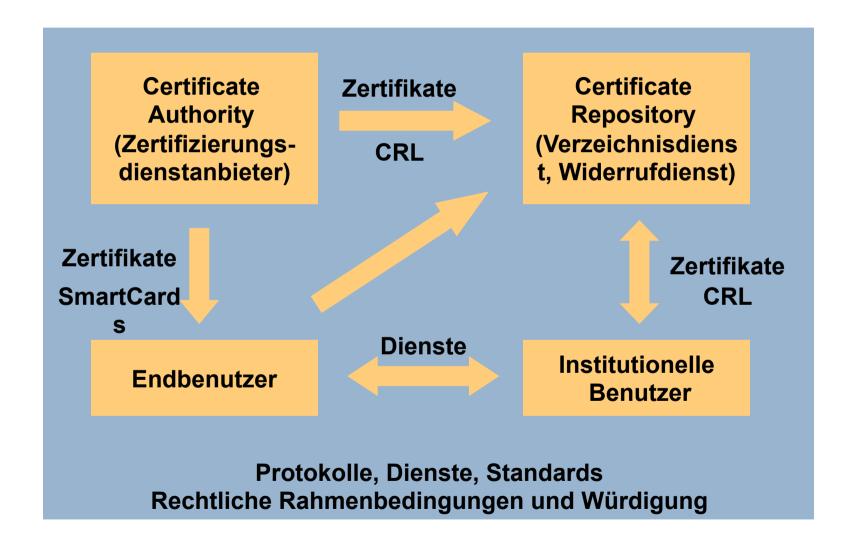

Zertifikatserweiterungen (0...N)

Digitale Signatur des Trust Centers (CA)



Zertifizierungshierarchie

- für bestimmte Zwecke


PKI (Zertifizierungsinfrastruktur)

- » Protokolle, Dienste und Standards
- » Technische Anforderungen
 - Erstellen von Schlüsselpaaren / Zertifikaten (X.509)
 - Widerrufen von Zertifikaten (CRL)
 - Auffinden und anbieten gültiger öffentlicher Zertifikate (LDAP, X. 500)
 - Verwalten von sicherheitsrelevanten Zusatzinformationen
 - Schlüsselrückgewinnung (?)
- » Rechtliche Rahmenbedingungen
 - Anforderungen an PKI
 - Rechtliche Würdigung

Bestandteile einer PKI

Technische Situation

- » Standards: X.509v3, X.500, LDAP, PKCS, PKIX, CRLv2
- » Kryptoalogrithmen und Schlüssellängen nach Stand der Forschung
- » Schlüsselaufbewahrung: SmartCards
- » Leistungsfähige CAs…

Rechtliche Situation

- » Kryptographie reguliert (Staatsschutz)
- » Schweiz
 - BAKOM fast fertig mit PKI-Verordnung
 - Ziel Leitplanken für Zertifizierungsdienste
 - Problem Ausführungsbestimmungen
 - Rechtswirkung der digitalen Unterschrift...
- » Europa
 - Richtlinie per 28. Juni 1999 Umsetzung 18 Monate
 - Signaturgesetze bereit: D, F, I, A...

Zusammenfassung

- » PKI für E-Commerce unumgänglich
 - Vereinfachung der Abläufe
 - Verbindlichkeit, Vertraulichkeit, Anonymität
- » Keine technischen Probleme
- » Schweiz rechtlich im Rückstand

Links

- » www.bakom.ch/ger/subpage/? category_104.html
- » www.ietf.org/html.charters/pkix-charter.html
- » www.semper.org/sirene/outsideworld/ security.html
- » www.ict.etsi.org/eessi/EESSI-homepage.htm
- » www.rsasecurity.com/rsalabs/

XHTML

XHTML 1.0

- » Offizielle n\u00e4chste Generation von HTML
- » Heutiger Standard: HTML 4
 - Gültige W3C-Empfehlung seit Dezember 1997
 - Style Sheets
 - Verbesserungen bei Scripting, Tables etc.
 - Aktueller Update: HTML 4.01

XHTML 1.0

- » Derzeit "Proposed Recommendation" des W3C
- » Wichtigste Änderung: Angleichung an XML-Standard
- » Fokus:
 - Konsistent und automatisch pr

 üfbar
 - Bessere Unterstützung verschiedenster Endgeräte
 - Modular und erweiterbar
 - Relativ problemloser Übergang von HTML 4.0

XHTML 1.0: Wichtigste strukturelle Neuerungen

- » Dokument muss "Well-formed" sein:
 - Korrekte Verschachtelung von Tags
 - Tags müssen immer abgeschlossen werden.

```
<b>Dieser Text ist fett <i>und dieser auch noch schräggedruckt</i></b><br/>
```

- » Gross- und Kleinschreibung wird unterschieden
- » Attributwerte müssen "gequoted" sein

XHTML 1.0: Integration anderer XML-**Namespaces**


```
<html xmlns="http://www.w3.org/1999/xhtml"</pre>
    xml:lang="en" lang="en">
    <head>
    <title>Ein mathematisches Beispiel</title>
    </head>
    <body>
    >Der folgende Abschnitt stellt eine Formel dar:
    <math xmlns="http://www.w3.org/1998/Math/MathML">
        <apply> <log/>
         <logbase>
                 \langle cn \rangle 3 \langle cn \rangle
         </logbase>
         <ci> x </ci>
         </apply>
         </body>
   </html>
```

Konsistente Integration von anwendungsspezifischem Markup.

Voraussetzung: Browser muss die zusätzlichen Tags sinnvoll interpretieren können.

- » Existierende HTML-4.0-Browser verstehen XHTML 1.0 (relativ) problemlos
- » Tools wie "HTML Tidy" generieren automatisch korrekten XHTML 1.0-Code aus bestehenden HTML-Seiten.
- » Editor-Tools sollten XHMTL in den n\u00e4chsten Versionen auch unterst\u00fctzen.
- » Darum: Abwarten, bis der Standard freigegeben ist, dann aber relativ schnell migrieren

Die Zukunft

- » In Vorbereitung: XHTML 1.1/2.0, XHTML Profiles, Extended Forms
- » Weitere Infos: www.w3c.org

Macromedia Flash

Macromedia Flash

- » De-facto-Standard für multimediale, vektororientierte Online-Animationen
 - Herstellerangaben: 88% der Internet-User haben Flash-Plug-In
 - Semi-offener Standard: Fileformat und Player-Sourcecode sind publiziert
 - Aktuelle Version: Flash 4
- » Player gratis als Plug-In für fast alle Plattformen, Editor als kostenpflichtige Software

Flash: Vor- und Nachteile

Vorteile:

- » Relativ schnelle Ladezeiten auch für längere Animationen dank optimiertem Streaming
- » Grosse Gestaltungsfreiheit (Effekte, Schriften, Sound usw.)
- » Skaliert automatisch auf Auflösungen und grafische Möglichkeiten

Nachteile:

- » Player nötig
- » Eher langsam über Modems
- » Kein wirklich offener Standard
- » Animationsdesign will gelernt sein...

Flash: Erweiterte Möglichkeiten

- » Flash Generator: Automatische Generierung von Flash-Movies per Programm
- » Ab Flash 4: Interaktivität mit Formularen
- » Export-Möglichkeiten in immer mehr Programmen
- » Standalone-Player

» Weitere Infos: www.flash.com

Open eBook

Open eBook

- » Standardinitiative für HTML- und XML-basiertes eBook-Format
- » Unterstützt von vielen grossen Verlagen, Softwarefirmen (z.B. Microsoft) und eBook-Herstellern
- » Final specification für Open eBook 1.0 erhältlich

Open eBook: Features

- » Eng verwandt mit HTML
- » XML-konform
- » Kann auch gut in gängigen Browsern dargestellt werden.
- » Jede Publikation wird geliefert in einem OEB-Package, das aus mehreren Files bestehen kann.
- » Mehrere Lesereihenfolgen ("Tours") können spezifiziert werden.

Open eBook: Weiterentwicklung

- » Nicht gelöst: Kopierschutz, Verrechnungsmechanismen
 - OEB ist nur Hintergrundstandard, eigentliche Publikationen bleiben derzeit abhängig von spezifischen Geräten.
- » Komplette Editiertools bestehen noch nicht
- » Endgeräte noch verbesserungswürdig, Reader-Software für PC angekündigt

» Weitere Infos: www.openebook.org

MP3

MP3 im Überblick

- » Eigentlich: MPEG-1, Audio Layer 3
- » Offener Standard für Kompression von digitalen Audio-Signalen

Technik

- » Kompressionsfaktor ca. 1:12
- » Normales CD-Signal: ca. 1400 Mbit/s MP-3 Stereo-Signal: ca. 128 Mbit/s
- » Prinzip: "Perceptual Noise Shaping" Herausfiltern von Klanginformation, die vom menschlichen Ohr sowieso nicht wahrgenommen werden.

Player

Software:

Taking You Timber

On

Hardware:

Demnächst: Weitere Formen von Hardware-Playern, z.B. für Heimanlage, Handy und Auto

Recording

» Verschiedene Programme für MP3-Recording auf dem PC sind erhältlich

Der Kopierschutz-Streit: Technische Sicht

Secure Envelope: Verschlüsselung, Kopierschutz

Komprimiertes Audio-Signal in MP3

» Problem: Wie verhindert man eine Trennung von Kopierschutz und digitalem Inhalt?

Anwendungsfelder

- » Heute dominierend: Verbreitung von Musik
 - Unbekannte Künstler, die sich bekanntmachen wollen
 - Relativ grosse Piratenszene, in der kommerzielle Musik verbreitet wird
- » Hörbücher
- » Sound-Unterstützung für Web-Applikationen

Konkurrenzstandards

- » Secure Digital Music Initivative als übergeordneter Standard für Copyright-Schutz
- » Electronic Music Management System/Madison Project (IBM)
- » a2b Music (AT&T)
- » Windows Media (Microsoft)
- » Liquid Audio

Ist MP3 der Musik-Standard der Zukunft?

Pro:

- » Mit Abstand höchste Verbreitung
- » Viel Software und Hardware erhältlich

Contra:

- » Verkäufe von Playern bisher relativ enttäuschend
- » Grosser Widerstand der Musikindustrie wg. Copyright-Problemen
- » Technisch bessere Standards existieren bereits

Links

- » www.mp3.org
- » www.mp3.com
- » www.mpeg.org
- www.iis.fhg.de/amm/techinf/layer3/index.html

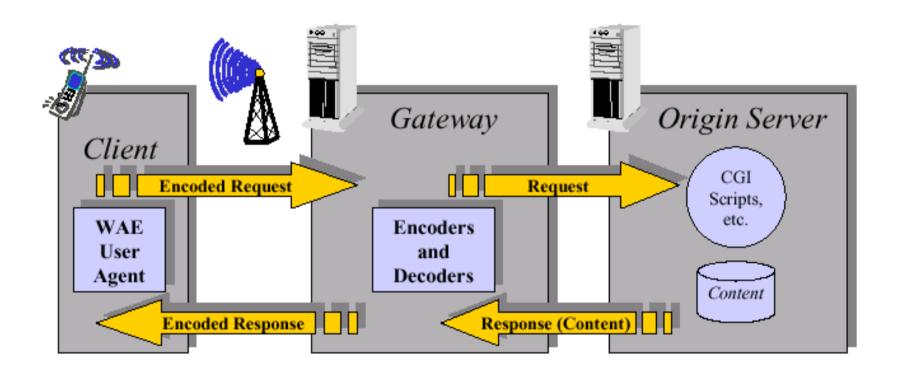
WAP

Neue Endgeräte: Mobiles Internet mit WAP

» Wireless Application Protocol (WAP):

Optimierte Protokolle für mobile Anwendungen, basierend auf Internet-Technologie

- » Endgeräte: Handy, PDA etc.
- » Seitendefinition mit Wireless Markup Language (WML): basiert auf XML


Warum ein neuer Standard für Wireless-Anwendungen?

- » Immer grössere Verbreitung von Mobile Phones, wachsende Akzeptanz von Data-Anwendungen (SMS)
- » Bisherige Internet-Standards sind schlecht für mobile Anwendungen geeignet
- » Divergierende Entwicklungen von verschiedenen Hersteller
- ⇒ Standardisierungsgremium WAP Forum unter Beteiligung fast aller wesentlichen Player

Wireless Application Environment (WAE): Architektur

WML-Beispielcode

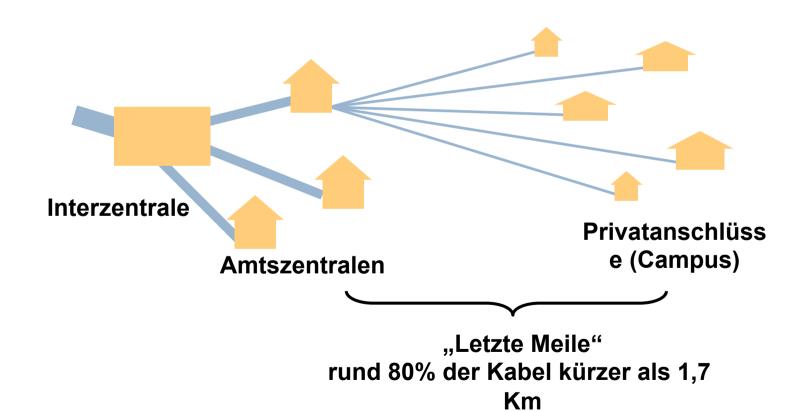
WML-Beispielcode (2)

Was ist erforderlich zum Anbieten von WAP-Applikationen?

- » Handelsüblicher Web-Server, angeschlossen ans Internet
- » Spezialkonfiguration: Spezielle MIME-Typen
- » WML-Seiten bzw. WML-generierende Anwendungen (CGI, Java Servlets, Active Server Pages etc.) Generiert mit WAP-Entwicklungsumgebung
- » Zugang für Mobil-User
 - entweder über öffentliches WAP-Gateway
 - ...oder eigenes WAP-Gateway im Intranet

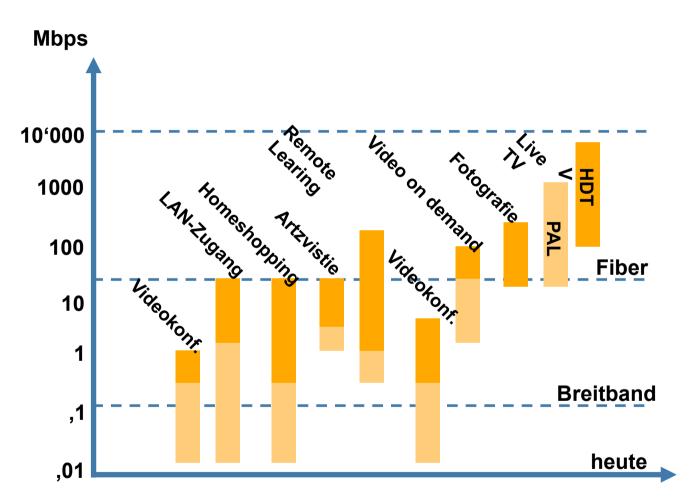
WAP-Links

- » www.wapforum.org
- » www.ericsson.com/wap
- » www.wap-magazin.de
- » www.wapnow.ch
- » www.wapguide.com



xDSL (Digital Subscriber Line)

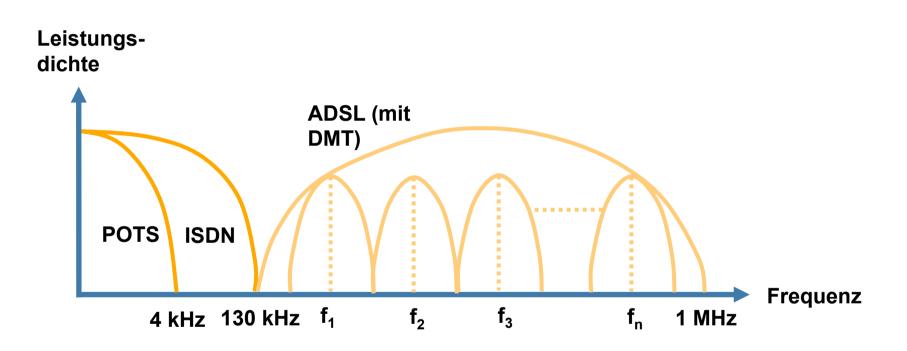
"Unbundling"



» "Der Kampf um die letzte Meile" oder "Aus Kupfer wird Gold"

Bedarf

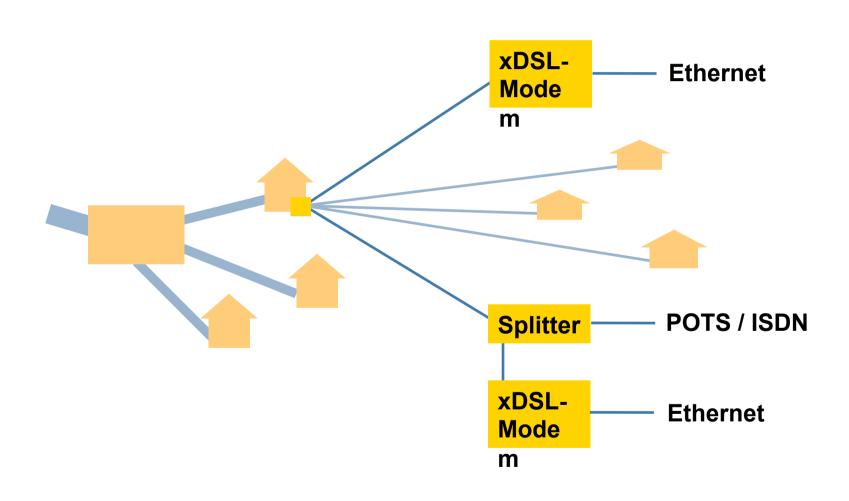
Residential Broadband. Kim Maxwell. Wiley, 1999


xDSL

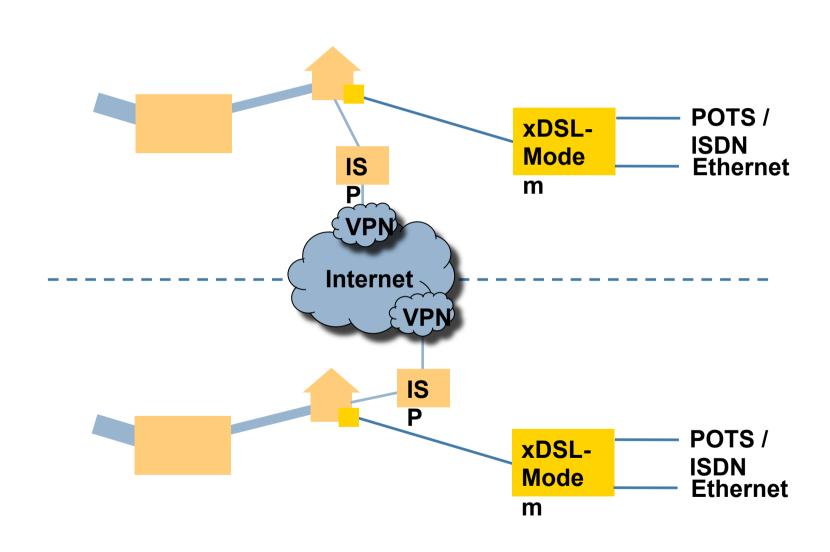
- » DSL = Digital Subscriber Line
- » Punkt zu Punkt Verbindungen über bestehende Kupfer-Leitungen (1 bis 4 Adern), "always on"
- » Erste DSL-Anwendung: ISDN
- » HDSL (high bitrate DSL) ab 1992 Technologie für T1/E1 auf fast allen Kabeln bis ca. 3 km

Frequenzbereiche

DSL – Die schnelle Leitung. c't 19/1999



ADS L	asynchr o-nous	1,5 - 8 Mbps down 64 Kbps – 640 Kbps up	2-Draht, bis 6 Km
L	universa I, G-Lite	1 Mbps down 512 Kbps up	Microsplitter, 2-Draht, bis 6 Km
HDS L		1,544 Mbps duplex (T1) 2,048 Mbps duplex (E1)	robust, 3 Km, 2 bis 6-Draht, bis 8 Km, repeater
SDS L	single line	200 Kbps - 2,048 Mbps	1-Draht, variable Bandbreite, bis 2,4 Km, 5,5 Km = 200
VDS L	high	13- 52 Mbps down 1,5 – 2,3 Mbps up (oder 34 Mbps symetrisch)	bis 1,5 Km, 2-Draht


namics

Verbindung in der gleichen Stadt: 2 Mbps

Verbindung über Distanz

Technische Probleme

- » Schlecht standardisiert
 - ANSI, ETSI
 - Hersteller
- » Datenrate hängt vor allem ab von
 - Dämpfung (Kabellänge)
 - Übersprechung (Beschaltungsgrad, Anzahl Kabel, Dienste)
 - Reflexion an Kabelübergängen
 - Kabelqualität

Kosten

- » Sehr billig
 - Aufschaltung und Miete Leitung
 - Veränderungen zu Hause
 - Endgeräte
- » Bsp. St. Gallen
 - Aufschalten Fr. 800. —
 - 1 km Fr. 45.—
 - jede weiter 100 Meter Fr. 3.— (Luftlinie)
 - Endgeräte...

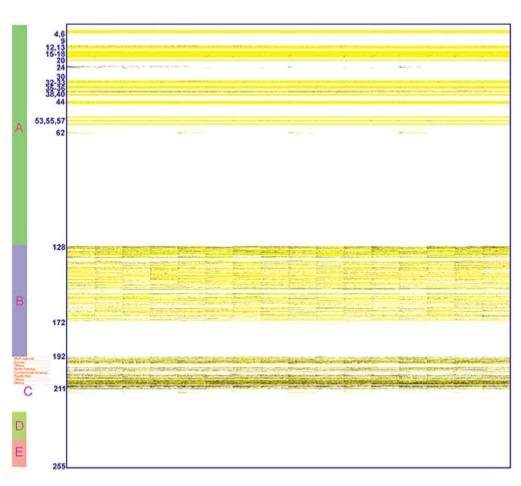
Zusammenfassung

- » Telephonleitungen sind flächendeckend vorhanden, sicher und rückwärtstauglich
- » Eignet sich zum Transport verschiedenster Netzwerkprotokolle
- » "Always on", Robust
- » Rasche Amortisation, kleiner Installationsaufwand
- » Nicht nur zum surfen… (symmetrisch)

Links

- » www.etsi.org
- » www.xdsl.com
- » www.dslreports.com
- » Residential Broadband. Kim Maxwell. Wiley, 1999

IPv6


Weshalb ein neuer Standard?

- » Knappheit von IP-Adressen
 - Wachstum Internet
 - NAT (network address translation, RFC 1631)
 - CIDR (classless interdomain routing, RFC 1817)
 - Intranet Adressen (RFC 1918)
 - Subnettierung (RFC 950 und RFC 1219)
 - xDSL, CATV sind "always on-line"

Adressraum IPv4

Nummernspiele. c't 9/1999

Wichtigste Änderungen gegenüber IPv6

- » grösserer Adressraum
- » einfacher, schnell auswertbare Pakete
- » Bessere Routen im Internet durch Gruppierung
- » Sicherheit im Protokoll verankert
- » bessere Multicast, Anycast statt Broadcast
- » QoS (quality of service)
- » Unterstützung von Switching

IPv4 Paket

32 Bit

V	HL	svc	Lenght			
ID			F	Offset		
TTL		Prot	Checksum			
Source Address (32 Bit)						
Destination Address (32 Bit)						
Options			Padding			
Data Field (bis 65'516 Bytes, typisch 500 resp. 1500)						

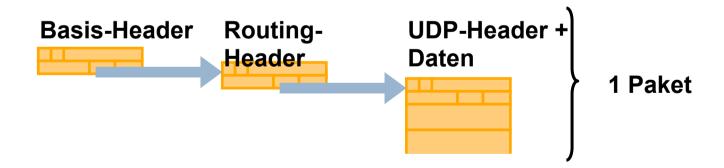
IPv6 Paket

32 Bit

V PRI Flow Label

Payload Lenght Next Hop L

Source Address (128 Bit)


Destination Address (128 Bit)

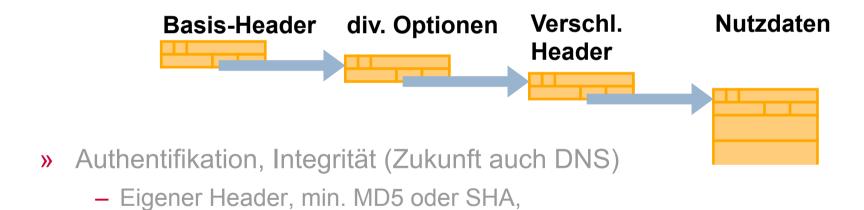
Data Field (bis 65'536 Bytes oder Jumbograms, typisch 500 resp. 1500)

Geschwindigkeit

- » Header auf Minimum gekürzt und fixe Länge
- » Fragmentierung durch Router verboten, keine Checksumme
- » Optionen durch verkettete Header

Adressierung

- » Verlängerung von 4 auf 16 Bytes
 - 2^128 IP-Adressen = 3,4 * 10 ^38
 - 340'282'366'920'938'463'463'374'607'431'768'211'456
 - pro mm^2 der Erdoberfläche 667 Billiarden Adressen
- » Andere Darstellung wegen Lesbarkeit
 - Gruppen von 2 Bytes in HEX
 - 4711:0:0:0:0:5:EEC1:6008 ist gleich 4711::5:EEC1:6008
 - 0000:0000:0000:0000:00065:78C1:009A:6008 ist gleich ::65:78C1:9A:6008
- » Gemischte Schreibweise: ::FFFF:128.1.35.201


Sicherheit

» Basiert vollständig auf Verfahren von IPSec

Verschlüsselung nicht festgelegt

» Vertraulichkeit

Einfachere Konfiguration

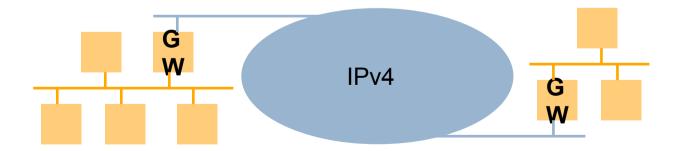
- » Zusätzlich zu DHCP statusfreie Adressengenerierung
- » ICMP-Erweiterungen
 - Router-Bekanntmachung, Anfrage an Router
 - Bekanntmachung von Nachbarn, Anfrage am Nachbarn
 - ARP-Ablösung
- » Mobile-IPv6: Zusätzliche Adresse und Agent im Heimnetz

» PRI-Feld im Basis-Header

	0000	unklassifiziert
	0001	zeitunkritisch (NEWS) / geringste Kosten
	1000	interaktiv (TELNET) / geringe Verzögerung realtime / geringe Verzögerung +
	1001	
Flusskont	0010	Steüerhachten (ROUTING) /
in höherer	0100	Massendaten (FTP) / max. Durchsatz

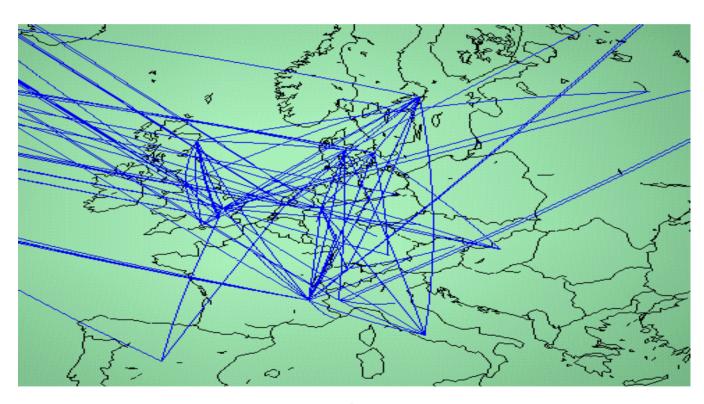
- Flusskon
 - Unterhalb von IP nicht möglich
 - Flow Label erlaubt Unterscheidung von Datenströmen

Aspekte bei der Migration



- » IETF working group NGTRANS
- » Auswirkungen auf Protokolle in Abklärung
 - UPD, TCP: Jumbograms
 - FTP: IP in Datenkapsel, PORT-Befehl
- » DNS: Neuer Bezeichner AAAA
- » DHCPv6, RIPng

Umstellung auf IPv6



- » IPv6 kompatible Produkte, Adressen und RFCs: www.6bone.net
- » Aufbau von IPv6-Inseln mit neuen Komponenten
 - Router, Nameserver, evt. DHCP, Clients
- » IPv6 durch IPv4 tunneln (später umgekehrt)

6Bone in Europa

www.nas.nasa.gov/Groups/LAN/IPv6/viz/static-maps.html

Zusammenfassung

- » Adressraum ist nicht das Thema
- » Viele interessante und gute Neuerungen
- » Rückwärtskompatibel aber Infrastruktur muss angepasst werden
- » Beide Standards werden während Jahren nebeneinander existieren
- » 6Bone: 1996 100 Standorte; Aktuell 503 über IPv4 Tunnel verbunden

Links

- » www.ip-sec.com
- » www.ietf.org/html.charters/ipngwg-charter.html
- » www.ietf.org/html.charters/ipsec-charter.html
- » www.cisco.com
- » www.6bone.net
- » IPv6 das neue Internet Protokoll. Hans Peter Dittler. dpunkt-Verlag, 1998

Danke für Ihre Aufmerksamkeit!

Frankfurt, Genf, Konstanz, Lausanne, St.Gallen, Zug, Zürich

www.namics.com

info@namics.com